Modification of Rubbers through Chemical Reactions including Controlled/"living" Radical Polymerization Techniques

리빙라디칼 중합법을 포함한 화학적 방법에 의한 고무의 개질

  • Joo, Sang-Il (Department of Nano Science and Technology, Sejong University) ;
  • Cho, Hyun-Chul (Polymeric Materials Research Team, Hyundai Motor Company) ;
  • Lee, Seong-Hoon (Polymeric Materials Research Team, Hyundai Motor Company) ;
  • Hong, Sung-Chul (Department of Nano Science and Technology, Sejong University)
  • 주상일 (세종대학교 나노공학과) ;
  • 조현철 (현대자동차 고분자재료연구팀) ;
  • 이상훈 (현대자동차 고분자재료연구팀) ;
  • 홍성철 (세종대학교 나노공학과)
  • Published : 2009.06.30

Abstract

Rubbers, such as natural rubber, polybutadiene, styrene-butadiene rubber, nitrile-butadiene rubber, chlorinated rubber and EPDM, have been continuously improved in response to a heavy demand and a new property requirement from industry. One of the best ways to realize the improvement is the modification of rubbers through chemical reactions, which produce materials with novel properties. In this review, chemical modification reactions of rubbers that contain carbon-carbon double bond units either in their main backbone or as a side group were briefly summarized. The chemical reactions introduce functional groups or functional polymer chains to polymer backbone, which transform a classical rubber to a highly functional material. Especially, we focused on a controlled/"living" radical polymerization techniques, with which a revolutionary broadening of the spectrum of the materials with well defined molecular weight, molecular weight distribution, chain end-functionality and architectures become possible.

고무는 천연 고무를 비롯하여 부타디엔 고무, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, EPDM, 염소화 고무 등 산업적 요구에 따라 발전하여 왔다. 광범위한 분야에서 고무가 사용됨에 따라 새로운 물성을 갖는 합성 고무나 개질 고무의 생산이 필요하게 되었다. 본 리뷰 논문에서는 이중 결합을 포함하는 고무의 화학적 개질을 통하여 고무의 구조를 변화시키거나, 관능기, 이종 고분자 등을 도입하는 몇 가지 방법들에 대하여 정리해 보고자 한다. 특히, 최근에 많은 응용이 시도되고 있는 리빙 라디칼 중합법에 의한 고무의 개질을 소개하고 이의 효과를 알아보고자 한다.

Keywords

References

  1. C. Chovino and P. Gramain, 'Influence of the Conformation on Chemical Modification of Polymers: Study of the Quaternization of Poly(4-vinylpyridine)', Macromolecules, 31, 7111 (1998) https://doi.org/10.1021/ma980502l
  2. E.-J. Wang, J.-S. Yoon, C.-S. Yoo, and N. C. Paik, 'Modification of Styrene-Butadiene-Styrene Block Copolymer and the Properties of Graft Products', Elastomer, 25, 273 (1990)
  3. A. Brvdon and G. G. Cameron, 'Chemical modification of unsaturated polymers', Prog. Polym. Sci., 4, 209 (1975) https://doi.org/10.1016/0079-6700(75)90005-2
  4. 허동섭, 이인규, '고무의 가황 및 열전도론', Elastomer, 7, 137 (1972)
  5. 백남철, '유기가황촉진제의 효과 (1) (Thiazole 계 촉진제에 의한 가황)', Elastomer, 8, 131 (1973)
  6. 백남철, '유기가황촉진제의 효과 (II) -Thiuram 촉진제에 의한 가황', Elastomer, 9, 19 (1974)
  7. 백남철, '유기가황촉진제의 효과 (3) -염기성촉진제에 의한 가황', Elastomer, 9, 65 (1974)
  8. D. Baskaran, 'Strategic developments in living anionic polymerization of alkyl (meth)acrylates', Prog. Polym. Sci., 28, 521 (2003) https://doi.org/10.1016/S0079-6700(02)00083-7
  9. V. Nguyen, W. Yoshida, J.-D. Jou, and Y. Cohen, 'Kinetics of free-radical graft polymerization of 1-vinyl-2-pyrrolidone onto silica', J. Polym. Sci., Part A: Polym. Chem., 40, 26 (2002) https://doi.org/10.1002/pola.10081
  10. K. Endo, K. Senoo, and Y. Takakura, 'Synthesis of polyisoprene macromonomer having terminal vinyl group and copolymerization of the macromonomer with ethylene and propylene', Eur. Polym. J., 35, 1413 (1999) https://doi.org/10.1016/S0014-3057(98)00237-7
  11. P. Zinck, M. Terrier, A. Mortreux, A. Valente, and M. Visseaux, 'A New Family of Styrene/Diene Rubbers', Macromol. Chem. Phys., 208, 973 (2007) https://doi.org/10.1002/macp.200700055
  12. 허동섭, 김종석, '디엔의 반응성 (I)', Elastomer, 21, 129 (1986)
  13. C. Nah, D. H. Kim, D. J. Kim, W. D. Kim, and Y.-W. Chang, 'Effect of Chlorination on Frictional Property of Natural Rubber', J. Korean Ind. Eng. Chem., 13, 321 (2002)
  14. J. H. Won, H. S. Joo, Y.-W. Chang, and K. H. Chung, 'Effect of Chlorinated Polyethylene (cPE) on Morphology and Mechanical Properties of Polypropylene (PP) and Nitrile Rubber (NBR) Blends', Elastomer, 40, 204 (2005)
  15. C. Decker and T. N. T. Viet, 'Photocrosslinking of functionalized rubbers IX. Thiol-ene polymerization of styrene-butadiene-blockcopolymers', Polymer, 41, 3905 (2000) https://doi.org/10.1016/S0032-3861(99)00649-7
  16. J. J. Reisinger and M. A. Hillmyer, 'Synthesis of fluorinated polymers by chemical modification', Prog. Polym. Sci., 27, 971 (2002) https://doi.org/10.1016/S0079-6700(02)00004-7
  17. A. S. Sirqueira and B. G. Soares, 'Mercapto-modified copolymers in elastomer blends. IV. The compatibilization of Natural Rubber/EPDM Blends', J. Appl. Polym. Sci., 83, 2892 (2002) https://doi.org/10.1002/app.10283
  18. M. G. Oliveira, B. G. Soares, C. M. F. Santos, M. F. Diniz, and R. C. L. Dutra, 'Mercapto-modified copolymers in polymer blends, 1. Functionalization of EPDM with mercapto groups and its use in NBR/EPDM blends', Macromol. Rapid Commun., 20, 526 (1999) https://doi.org/10.1002/(SICI)1521-3927(19991001)20:10<526::AID-MARC526>3.0.CO;2-2
  19. O. P. Grigoryeva and J. Karger-Kocsis, 'Melt grafting of maleic anhydride onto an ethylene-propylene-diene terpolymer (EPDM)', Eur. Polym. J., 36, 1419 (2000) https://doi.org/10.1016/S0014-3057(99)00205-0
  20. S. H. El-Sabbagh, 'Compatibility study of natural rubber and ethylene-propylene-diene rubber blends', J. Appl. Polym. Sci., 90, 1 (2003) https://doi.org/10.1002/app.12345
  21. M. G. Oliveira and B. G. Soares, 'Effect of anhydride-modified ethylene-propylene-diene rubber and ethylene-vinyl acetate copolymers on the compatibilization of nitrile rubber/ethylenepropylene-diene rubber blends', J. Appl. Polym. Sci., 90, 2408 (2003) https://doi.org/10.1002/app.12891
  22. H. Zheng, Y. Zhang, Z. L. Peng, and Y. X. Zhang, 'Influence of the clay modification and compatibilizer on the structure and mechanical properties of ethylene-propylene-diene rubber/montmorillonite composites', J. Appl. Polym. Sci., 92, 638 (2004) https://doi.org/10.1002/app.13560
  23. I. Aravind, P. Albert, C. Ranganathaiah, J. V. Kurian, and S. Thomas, 'Compatibilizing effect of EPM-g-MA in EPDM/poly (trimethylene terephthalate) incompatible blends', Polymer, 45, 4925 (2004) https://doi.org/10.1016/j.polymer.2004.04.063
  24. C. Komalan, K. E. George, S. Jacob, and S. Thomas, 'Reactive compatibilization of nylon copolymer/EPDM blends: experimental aspects and their comparison with theory', Polym. Adv. Technol., 19, 351 (2008) https://doi.org/10.1002/pat.1012
  25. M. S. Kim and B. K. Kim, 'Reactive melt blends of thermoplastic polyolefins, MAH-g-PP and nylon 6', Polym. Adv. Technol., 15, 419 (2004) https://doi.org/10.1002/pat.464
  26. H. Huang, J. L. Yang, X. Liu, and Y. X. Zhang, 'Dynamically vulcanized ethylene propylene diene terpolymer/nylon thermoplastic elastomers', Eur. Polym. J., 38, 857 (2002) https://doi.org/10.1016/S0014-3057(01)00270-1
  27. D. W. Kang, B. J. Kim, and D. S. Shim, 'Preparation of Maleated Ethylene-Propylene-Diene Terpolymer (EPDM-g-MA) Modified with a,w-Aminopropyl Polydimethylsiloxane', J. Ind. Eng. Chem., 6, 270 (2000) https://doi.org/10.1021/ie50063a054
  28. L. Leibler, 'Nanostructured plastics: Joys of self-assembling', Prog. Polym. Sci., 30, 898 (2005) https://doi.org/10.1016/j.progpolymsci.2005.06.007
  29. A. Pticek, Z. Hrnjak-Murgic, J. Jelencic, and T. Kovacic, 'Study of the effect of structure of ethylene-propylene-diene-graftpolystyrene copolymers on their physical properties', Polym. Degrad. Stabil., 90, 319 (2005) https://doi.org/10.1016/j.polymdegradstab.2005.04.047
  30. N. Hadjichristidisa, H. Iatroua, M. Pitsikalisa, and J. Mays, 'Macromolecular architectures by living and controlled/living polymerizations', Prog. Polym. Sci., 31, 1068 (2006) https://doi.org/10.1016/j.progpolymsci.2006.07.002
  31. K. Matyjaszewski, 'Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties', Prog. Polym. Sci., 30, 858 (2005) https://doi.org/10.1016/j.progpolymsci.2005.06.004
  32. W. A. Braunecker and K. Matyjaszewski, 'Controlled/living radical polymerization: Features, developments, and perspectives', Prog. Polym. Sci., 32, 93 (2007) https://doi.org/10.1016/j.progpolymsci.2006.11.002
  33. J.-S. Wang and K. Matyjaszewski, 'Controlled/'living' radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes', J. Am. Chem. Soc., 117, 5614 (1995) https://doi.org/10.1021/ja00125a035
  34. V. Percec and B. Barboiu, ''Living' Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl', Macromolecules, 28, 7970 (1995) https://doi.org/10.1021/ma00127a057
  35. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, 'Narrow molecular weight resins by a free-radical polymerization process', Macromolecules, 26, 2987 (1993) https://doi.org/10.1021/ma00063a054
  36. C. J. Hawker, A. W. Bosman, and E. Harth, 'New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations', Chem. Rev., 101, 3661 (2001) https://doi.org/10.1021/cr990119u
  37. J. Chiefari, Y. K. B. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F.Meijs, C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang, 'Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process', Macromoleculas, 31, 5559 (1998) https://doi.org/10.1021/ma9804951
  38. J. Bonilla-Cruz, E. Saldivar-Guerra, J. R. Torres-Lubian, R. Guerrero-Santos, B. Lopez-Carpy, and G. Luna-Barcenas, 'Controlled Grafting-From of Polystyrene on Polybutadiene: Mechanism and Spectroscopic Evidence of the unctionalization of Polybutadiene with 4-Oxo-TEMPO', Macromol. Chem. Phys., 209, 2268 (2008) https://doi.org/10.1002/macp.200800367
  39. M. Abbasian, H. Namazi, and A. A. Entezami, 'Living' radical graft polymerization of styrene to styrene butadiene rubber (SBR) with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)', Polym. Adv. Technol., 15, 606 (2004) https://doi.org/10.1002/pat.515
  40. M. Sawamoto and M. Kamigaito, 'Transition metal catalyzed living radical polymerization', Chemtech, 29, 30 (1999)
  41. K. Matyjaszewski, 'Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization', Chem. Eur. J., 5, 3095 (1999) https://doi.org/10.1002/(SICI)1521-3765(19991105)5:11<3095::AID-CHEM3095>3.0.CO;2-#
  42. S. C. Hong and K. Matyjaszewski, 'Fundamentals of Supported Catalysts for Atom Transfer Radical Polymerization (ATRP) and Application of an Immobilized/Soluble Hybrid Catalyst System to ATRP', Macromolecules, 35, 7592 (2002) https://doi.org/10.1021/ma020054o
  43. X.-s. Wang, N. Luo, and S.-k. Ying, 'Synthesis of EPDM-g-PMMA through atom transfer radical polymerization', Polymer, 40, 4515 (1999) https://doi.org/10.1016/S0032-3861(98)00693-4
  44. A. Tidjani, O. Wald, M.-M. Pohl, M. P. Hentschel, and B. Schartel, 'Polypropylene-graft-maleic anhydride-nanocomposites:I - Characterization and thermal stability of nanocomposites produced under nitrogen and in air', Polym. Degrad. Stabil., 82, 133 (2003) https://doi.org/10.1016/S0141-3910(03)00174-5
  45. A. Tidjani, 'Polypropylene-graft-maleic anhydride nanocomposites:II - fire behaviour of nanocomposites produced under nitrogen', Polym. Degrad. Stabil., 87, 43 (2005) https://doi.org/10.1016/j.polymdegradstab.2004.07.007