청혈단(淸血丹)의 6-hydroxydopamine에 의해 유발된 독성에 대한 신경세포보호효과

The Protective Effect of Chunghyul-dan(Qingxuedan) Against 6-hydroxydopamine Induced Neurotoxicity.

  • 김광호 (경희대학교 한의과대학 한방신경정신과) ;
  • 김종우 (경희대학교 한의과대학 한방신경정신과) ;
  • 정선용 (경희대학교 한의과대학 한방신경정신과) ;
  • 조성훈 (경희대학교 한의과대학 한방신경정신과) ;
  • 오명숙 (경희대학교 약학대학 한약학과) ;
  • 황의완 (경희대학교 한의과대학 한방신경정신과)
  • Kim, Gwang-Ho (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Kim, Jong-Woo (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Chung, Sun-Yong (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Cho, Sung-Hoon (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Oh, Myun-Sook (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung-Hee University) ;
  • Hwang, Wei-wan (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University)
  • 발행 : 2009.03.30

초록

Objectives : This Study was performed to assess the antioxidant and neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells and primary rat mesencephalic dopaminergic neurons. Methods : The anioxidant effect was investigated using the DPPH radical and ABTS cation scavenging assays and total polyphenol amout of Chunghyul-dan(Qingxuedan). The neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells was evaluated using MTT assay. The scavenging activity of Chunghyul-dan(Qingxuedan) on ROS production induced by 6-OHDA(6-hydroxydopamine) in PC12 cells was evaluated, as well as the attenuating effect on GSH reduction. Finally, we examined the neuroprotective effect of Chunghyul-dan(Qingxuedan) against 6-0HDA-induced toxicity in the primary culture of rat mesencephalic doperminergic neurons. Results : Chunghyul-dan(Qingxuedan) showed concentration-dependent scavenging activities in DPPH radical and ABTS cation scavenging assays and it was not cytotoxic to PC12 cells. In postand co-treatment, Chunghyul-dan(Qingxuedan) protected PC12 cells from the 6-OHDA induced toxicity at 50 and 100 ${\mu}$g/mL significantly. And Chunghyu!-dan(Qingxuedan) decreased the 6-OHDA induced ROS production at a dose dependent manner, while increaing the 6-OHDA induced GSH reduction at 50 and 100 ${\mu}$g/mL significantly. Finally, Chunghyul-dan(Qingxuedan) showed signicant protection of rat mescencephalic dopaminergic neurons from 6-OHDA at 1 ${\mu}$g/mL. Conclusions : These results demonstrate that Chunghyul-dan(Qingxuedan) has the antioxidant and neuroprotective effect against 6-0HDA induced cytotoxicity through decreasing ROS production and increasing GSH reduction.

키워드

참고문헌

  1. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987; 1(5):358-64.
  2. 최병기, 정세영, 박광식, 조정희. 활성산소와 질환. 서울:도서출판 신일상사. 2007: 3,214-23, 311-12.
  3. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57(suppl):715S-25S.
  4. Rubanyi GM. Vascular effects of oxygen-derived free radicals. Free Radic Biol Med. 1998;4(2):107-20. https://doi.org/10.1016/0891-5849(88)90071-8
  5. Lee EY, Lee MY, Hong SW, Chung CH, Hong SY. Blockade of oxidative stress by vitamin C ameliorates albuminuria and renal sclerosis in experimental diabetic rats. Younsei Med J. 2007;48(5):847-55. https://doi.org/10.3349/ymj.2007.48.5.847
  6. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756-60.
  7. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956; 11:298. https://doi.org/10.1093/geronj/11.3.298
  8. Harman D. Free radical theory of aging : dietary implications. Am J Clin Nutr. 1972;25(8):839-43.
  9. Harman D. The aging process. Proc Natl Acad Sci USA. 1981;78(11):7124-8. https://doi.org/10.1073/pnas.78.11.7124
  10. Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008;21:172-88. https://doi.org/10.1021/tx700210j
  11. 손창우, 채종구, 김길훤, 신흥물. 산사의 혈 관이완 효능과 항산화 작용. 대한동의병리학회지. 2002;16(1):67-71.
  12. 임규, 박용기, 강병수. 칡의 부위별 항산화 작용에 관한 연구. 대한본초학회지. 2001;16(2):101-11.
  13. 최호정, 신흥묵. 갈근이 항산화작용에 의한 위점막 보호효과와 내인성 sulfhydryl 화합물의 영향. 대한동의생리학회지. 1999;14(2):1-9.
  14. 이지은, 송윤경, 임형호. 상엽추출물의 항산화효과에 대한 연구. 대한한의학회지. 2007;8(1):148-58.
  15. 신흥묵. 희첨의 혈관이완 효능과 항산화 동태에 관한 연구. 대한한의학회지. 2000;6(1):104-11.
  16. 이문조, 박진우, 김동주, 김준기, 최달영, 김철호. 황백 열수출출물의 항산화활성과 아질산염 소거작용에 관한 연구. 대한동의병리학회지. 1999;13(1):112-8.
  17. 이무형, 윤철호, 정지천. 신장조직에서 백 강잠 추출물의 항산화 작용에 관한 연구. 동국대논문집. 1998;7(1):87-98.
  18. 박용기. 현삼의 항산화 작용에 관한 연구. 대한본초학회지. 1998;13(1):201-20.
  19. 유진숙, 송윤경, 임형호. 홍화추출물의 항산화효과에 대한 연구. 대한한의학회지. 2007;28(1):137-47.
  20. 박시흥, 강경수, 박용기. 인삼의 배합에 따른 수종 한약재의 항산화작용에 관한 연구 (I). 대한본초학회지. 1999;14(1):45-54.
  21. 박시흥, 강경수, 박용기. 인삼의 배합에 따른 수종 한약재의 항산화작용에 관한 연구 (II). 대한본초학회지. 1999;14(2):23-32.
  22. 김봉수, 박용기, 강병수. 토사자류의 항산화 작용에 대한 연구. 대한본초학회지. 1997;12(1):67-84.
  23. 박용기, 강병수. 보골지의 항산화 작용에 관한 연구. 대한본초학회지. 1996;11(2):101-14.
  24. 정미영, 박희준, 정지행, 김진용, 강전모, 이나경, 임사비나. 대식세포에서 산화질소 생성에 대한 당귀 에탄올 추출물의 억제효과. 대한한의학회지. 2007;28(2):155-65.
  25. 안상원, 이철완. 숙지황과 육미지황탕이 노화과정 흰쥐에서의 항산화 기전에 미치는 영향. 대전대논문집. 1999;8(1):593-623.
  26. 박선동, 박현준, 주왕석. 귀비탕 및 그 구성약물군이 항산화 효과에 미치는 영향. 대한본초학회지. 2001;16(1):11-27.
  27. 박선동, 서효수, 박원환. 보중익기탕과 소음인 보중익기탕 및 그 구성약물군이 고혈당 백서의 항산화 효과에 미치는 영향. 대한본초학회지. 2001;16(2):113-26.
  28. 김경선, 신흥묵. 가미향사육군자탕의 indomethacin 유도 위점막손상에 미치는 항산화 효과. 대한한의학회지 1998;19(1):165-78.
  29. 김병탁. 경옥탕의 항산화 작용에 대한 실험적 연구. 대전대논문집. 1998;7(1):741-8.
  30. 정지천. 좌귀음과 우귀음에 의한 활성 산소류의 소거작용과 항산화 효소계의 활성증가 효과에 대한 연구. 대한한의학회지. 1996;17(1):21-36.
  31. 김동찬, 노승현, 이상인, 이영종, 주영승. 방제학. 서울:영림사. 1990:111-13, 263-4.
  32. 김은선, 박치상, 박창국. 황련해독탕과 온청음이 고혈압 및 고지혈증에 미치는 영향. 대한한의학회지. 1999;20(1):185-96.
  33. 송호준. 황련해독탕이 면양적혈구에 대한 면역반응에 미치는 영향. 대한한의학회지. 1985;6(1):104-11.
  34. 두호경, 박헌재. 황련해독탕의 약리학적 연구. 경희대논문집 1982;5:103-14.
  35. 이민정, 김영옥, 이강진, 유영법, 김선여, 김성수, 김호철. 황련해독탕의 4-VO로 유발 한 흰쥐뇌허혈에 대한 신경보호효과. 대한한의학회지. 2002;23(4):161-8.
  36. Fujiwara M, Iwasaki K. Toki-shakuyaku-San and Oren-Gedoku-To improve the disruption of spatial cognition induced by cerebral ischemia and central cholinergic dysfunction in rats. Phytotherapy Research. 1993;7:S60-2. https://doi.org/10.1002/ptr.2650070718
  37. 정기현, 최요섭, 김이동, 김정렬, 정우상, 문상관, 조기호. 淸血丹이 고지혈증 환자의 혈청지질에 미치는 영향. 대한한방내과학회지. 2003;24(3): 543-50.
  38. Cho KH, Kim YS, Bea HS, Moon SK, Jung WS, Park EK, Kim DH. Inhibitory effect of Chunghyuldan in prostaglandin E2 and nitric oxide biosynthesis of lipopolysaccharide-induced RAW 264.7 cells. Biol Pharm Bull. 2004;27(11):1810-3. https://doi.org/10.1248/bpb.27.1810
  39. 전국한의과대학 본초학교수 공편저. 본초학. 서울:영림사. 1992:167-8, 178-83, 242-3.
  40. Cho EJ, Yokozawa T, Rhee SH, Park KY. The role of Coptidis Rhizoma extract in a renal ischemia-reperfusion model. Phytomedicine. 2004;11(7-8):576-84. https://doi.org/10.1016/j.phymed.2003.07.005
  41. Leu CH, Li CY, Yao X, Wu TS. Constituents from the leaves of Phellodendron amurense and their antioxidant activity. Chem. Pharm. Bull. 2006;54(9):1308-11. https://doi.org/10.1248/cpb.54.1308
  42. Huang WH, Lee AR, Yang CH. Antioxidative and Anti-Inflammatory Acivities of Polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem. 2006;70(10):2371-80. https://doi.org/10.1271/bbb.50698
  43. Choi SJ, Kim MJ, Heo HJ, Hong B, Cho HY, Kim YJ, Kim HK, Lim ST, Jun WJ, Kim EK, Shin DH. Ameliorating effect of Gardenia jasminoides extract on amlyoid beta peptide-induced neuronal cell deficit. Mol Cells. 2007;24(1):113-8.
  44. Wojcikowski K, Stevenson L, Leach D, Wohlumuth H, Gobe G. Antioxidant capacity of 55 medical herbs traditionally used to treat the urinary system: a comprarison using a sequential three-solvent extraction process. J Altern Complement Med. 2007;13(1):103-9. https://doi.org/10.1089/acm.2006.6122
  45. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215:213-9. https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
  46. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;181:1190-200. https://doi.org/10.1038/1811190a0
  47. George P, Dimltrios B. Antioxidant effect of natural phenols on Olive oil. J Am Oil Chem Soc. 1991;68:669-71. https://doi.org/10.1007/BF02662292
  48. Stadtman ER. Protein oxidation and aging, Science. 1992;257(5074):1220-4. https://doi.org/10.1126/science.1355616
  49. Mascio PD, Murphy ME, Sies H. Antioxidant defense systems:the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr. 1991;53:194S-200S.
  50. Gutteridge JM, Halliwell B. Comments on review of free radicals in biology and medicine. Free Radic Biol Med. 1992;12(1):93-5. https://doi.org/10.1016/0891-5849(92)90062-L
  51. Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids. 2003;25:295-311. https://doi.org/10.1007/s00726-003-0018-8
  52. Floyd RA. Neuroinflammatory processes are important in neurodegenerative disease: an hypothesis to explane the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radical Biol Med. 1999;26:1346-55. https://doi.org/10.1016/S0891-5849(98)00293-7
  53. Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathway in brain aging and neurodegenerative disorders:The role of oxidant/antioxidant balance. Neurochem Res. 2000;25:1315-41. https://doi.org/10.1023/A:1007604414773
  54. Contestabile A, Monti B, Contestabile A, Ciani E. Brain nitric oxide and its dual role in neurodegeneration/neuroprotection: understanding molecular mechanisms to devise drug approaches. Curr Med Chem. 2003;10(20):2147-74. https://doi.org/10.2174/0929867033456792
  55. Chung KK, Dawson TM, Dawson VL. Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol(Noisy-le-grand). 2005;51(3):247-54.
  56. Sayre LM, Moreira PI, Smith MA, Perry G. Metal ions and oxidative protein modification in neurological disease. Ann Ist Super Sanita. 2005;41(2):143-64.
  57. Donnelly PS, Xiao Z, Wedd AG. Copper and Alzheimer's disease. Curr Opin Chem Biol. 2007;11(2):128-33. https://doi.org/10.1016/j.cbpa.2007.01.678
  58. Salazar J, Mena N, Nunez MT. Iron dyshomeostasis in Parkinson's disease. J Neural Transm. Suppl. 2006;71:205-13. https://doi.org/10.1007/978-3-211-33328-0_22
  59. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787-95. https://doi.org/10.1038/nature05292
  60. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L. Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis. 2006; 10(1):59-73.
  61. Andersen JK. Oxidative stress in neurodegeneration:cause or cosequence? Nat Med. 2004;10(Suppl):S18-25. https://doi.org/10.1038/nrn1434
  62. Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem. 2001;8(7):721-38. https://doi.org/10.2174/0929867013372922
  63. Halliwell B. Oxidative stress and neurodegeneration:where are we now? J. Neurochem. 2006;97(6):1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x
  64. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J Neurosci. 1999;19:1959-64.
  65. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759-67.
  66. Nunomura A, Chiba S, Kosaka K, Takeda A, Castellani RJ, Smith MA, Perry G. Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. Neuroreport. 2002;13:2035-39. https://doi.org/10.1097/00001756-200211150-00009
  67. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, doparmine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001;65(2):135-72m. https://doi.org/10.1016/S0301-0082(01)00003-X
  68. Jordan J, Galindo MF, Tornero D, Gonzalez-Garcia C, Cena V. Bcl-x blocks mitochondrial multiple conductance channel activation and inhibits 6-OHDA-induced death in SH-SY5Y cells. J Neurochem. 2004;89(1):124-33. https://doi.org/10.1046/j.1471-4159.2003.02299.x
  69. Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 2004;5(2):213-18. https://doi.org/10.1038/sj.embor.7400074
  70. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis GJ, Cho JW, Oh YJ. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8 and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem. 2004;279(19):20451-60. https://doi.org/10.1074/jbc.M311164200
  71. Liang Q, Liou AK, Ding Y, Cao G, Xiao X, Perez RG, Chen J. 6-Hydroxydopamine induces dopaminergic cell degeneration via a caspase-9-mediated apoptotic pathway that is attenuated by caspase-9dn expression. J Neurosci Res. 2004;77(5):747-61. https://doi.org/10.1002/jnr.20198
  72. Hanrott K, Gudmunsen L, O'Neill MJ, Wonnacott S. 6-Hydroxdopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem. 2006;281(9):5373-82. https://doi.org/10.1074/jbc.M511560200
  73. Chen ZH, Saito Y, Yoshida Y, Sekine A, Noguchi N, Niki E. 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J Biol Chem. 2005; 280(51):41921-27. https://doi.org/10.1074/jbc.M508556200
  74. Ochu EE, Rothwell NJ, Waters CM. Caspases mediate 6 - hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem. 1998;70(6):2637-40. https://doi.org/10.1046/j.1471-4159.1998.70062637.x
  75. Xu R, Liu J, Chen X, Xu F, Xie Q, Yu H, Guo Q, Zhou X, Jin Y. Ribozyme-mediated inhibition of caspase-3 activity reduces apoptosis induced by 6-hydroxydopamine in PC12 cells. Brain Res. 2001;899(1-2):10-9. https://doi.org/10.1016/S0006-8993(01)02122-9
  76. Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V. JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine. J Biol Chem. 2004;279(53):55385-92. https://doi.org/10.1074/jbc.M405858200
  77. Cohen G, Heikkila RE. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem. 1974;249(8):2447-52.
  78. Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res. 2005;79(6):849-60. https://doi.org/10.1002/jnr.20382
  79. Bové J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson's disease. NeuroRx. 2005;2(3):484-94. https://doi.org/10.1602/neurorx.2.3.484
  80. Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998;339(15):1044-53. https://doi.org/10.1056/NEJM199810083391506
  81. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002; 175(2):303-17. https://doi.org/10.1006/exnr.2002.7891
  82. Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson's disease: is there a causal link? Exp Neurol. 2005;193(2):279-90. https://doi.org/10.1016/j.expneurol.2005.01.013
  83. Gotz ME, Künig G, Riederer P, Youdim MB. Oxidative stress: free radical production in neural degeneration. Pharmacol Ther. 1994;63(1):37-122. https://doi.org/10.1016/0163-7258(94)90055-8
  84. Tse DC, McCreery RL, Adams RN. Potential oxidative pathways of brain catecholamines. J Med Chem. 1976;19(1):37-40. https://doi.org/10.1021/jm00223a008
  85. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978;14(4):644-53.
  86. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55(6):659-65. https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C
  87. 허준. 원본동의보감(신증판). 서울:남산당. 1998:396.
  88. Sekiya N, Kogure T, Kita T, Kasahara Y, Sakakibara I, Goto H, Shibahara N, Shimada Y, Terasawa K. Reduction of plasma triglyceride level and enhancement of plasma albumin concentration by Oren-gedoku-to administration. Phytomedicine. 2002;9(5):455-60. https://doi.org/10.1078/09447110260571724
  89. Hwang YS, Shin CY, Huh Y, Ryu JH. Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sci. 2002;71(18):2105-17. https://doi.org/10.1016/S0024-3205(02)01920-3
  90. Hayashi T, Ohta Y, Inagaki S, Harada N. Inhibitory action of Oren-gedoku-to extract on enzymatic lipid peroxidation in rat liver microsomes. Biol Pharm Bull. 2001;24(10):1165-70. https://doi.org/10.1248/bpb.24.1165
  91. Sekiya N, Kainuma M, Hikiami H, Nakagawa T, Kouta K, Shibahara N, Shimada Y, Terasawa K. Oren-gedoku-to and Keishi-bukuryo-gan-ryo inhibit the progression of atherosclerosis in diet-induced hypercholesterolemic rabbits. Biol Pharm Bull. 2005;28(2):294-8. https://doi.org/10.1248/bpb.28.294
  92. Sanae F, Komatsu Y, Amagaya S, Chisaki K, Hayashi H. Effects of 9 Kampo medicines clinically used in hypertension on hemodynamic changes induced by theophylline in rats. Biol Pharm Bull. 2000;23(6):762-5. https://doi.org/10.1248/bpb.23.762
  93. Mizukawa H, Yoshida K, Honmura A, Uchiyama Y, Kaku H, Nakajima S, Haruki E. The effect of orengedokuto on experimentally-inflamed rats. Am J Chin Med. 1993;21(1):71-8. https://doi.org/10.1142/S0192415X93000091
  94. Wee SS, Shin YW, Bae EA, Kim DH. Effect of chunghyuldan in chronic oxazolone-induced mouse dermatitis. Biol Pharm Bull. 2005;28(6):1079-82. https://doi.org/10.1248/bpb.28.1079
  95. Yun SP, Jung WS, Park SU, Moon SK, Ko CN, Cho KH, Kim YS, Bae HS. Anti-hypertensive effect of chunghyul-dan (qingxue-dan) on stroke patients with essential hypertension. Am J Chin Med. 2005;33(3):357-64. https://doi.org/10.1142/S0192415X05002977
  96. Kim YS, Jung EA, Shin JE, Chung JC, Yang HK, Kim NJ, Cho KH, Bae HS, Moon SK, Kim DH. Daio-Orengedokuto inhibits HMG-CoA reductase and pancreatic lipase. Biol Pharm Bull. 2002;25(11): 1442-5. https://doi.org/10.1248/bpb.25.1442
  97. Cho KH, Kang HS, Jung WS, Park SU, Moon SK. Efficacy and safety of chunghyul-dan (qingwie-dan) in patients with hypercholesterolemia. Am J Chin Med. 2005;33(2):241-8. https://doi.org/10.1142/S0192415X05002898
  98. Cho JY, Baik KU, Yoo ES, Yoshikawa K, Park MH. In vitro antiinflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica. J Nat Prod. 2000;63(9):1205-9. https://doi.org/10.1021/np9902791
  99. Liu F, Ng TB. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 2000;66(8):725-35. https://doi.org/10.1016/S0024-3205(99)00643-8
  100. Tang LQ, Wei W, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol. 2006;108(1):109-15. https://doi.org/10.1016/j.jep.2006.04.019
  101. Shang YZ, Qin BW, Cheng JJ, Miao H. Effect of Scutellaria falvonoids on KCN-induced damages in rat pheochromocytoma PC12 cells. Indian J Med Res. 2008;127(6):610-5.
  102. Huang WH, Lee AR, Yang CH. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem. 2006;70(10):2371-80. https://doi.org/10.1271/bbb.50698
  103. Park EK, Rhee HI, Jung HS, Ju SM, Lee YA, Lee SH, Hong SJ, Yang HI, Yoo MC, Kim KS. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother Res. 2007;21(8):746-50. https://doi.org/10.1002/ptr.2156
  104. Liao H, Banbury LK, Leach DN. Elucidation of danzhixiaoyao wan and its constituent herbs on antioxidant activity and inhibition of nitric oxide production. Evid Based Complement Alternat Med. 2007;4(4):425-30. https://doi.org/10.1093/ecam/nel091
  105. Moon MK, Kang DG, Lee AS, Yeom KB, Kim JS, Lee HS. Anti-atherogenic effects of the aqueous extract of rhubarb in rats fed an atherogenic diet. Am J Chin Med. 2008;36(3):555-68. https://doi.org/10.1142/S0192415X08005977
  106. Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. 1999;1472(3):643-50. https://doi.org/10.1016/S0304-4165(99)00152-X
  107. Giovannini C, Scazzocchio B, Varì R, Santangelo C, D'Archivio M, Masella R. Apoptosis in cancer and atherosclerosis: polyphenol activities. Ann Ist Super Sanita. 2007;43(4):406-16.
  108. Anesini C, Ferraro GE, Filip R. Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J Agric Food Chem. 2008;56(19):9225-9. https://doi.org/10.1021/jf8022782
  109. Asghar Z, Masood Z. Evaluation of antioxidant properties of silymarin and its potential to inhibit peroxyl radicals in vitro. Pak J Pharm Sci. 2008;21(3):249-54.
  110. Sladowski D, Steer SL, Clothier RH, Balls M. An improved MTT assay. J Immunol Methods. 1993;157:203-7. https://doi.org/10.1016/0022-1759(93)90088-O
  111. Bernas T, Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT : interaction of MTT with TMRE, JC-1, and NAO Mitochondrial fluorescent probes. Cytometry. 2002;47:236-42. https://doi.org/10.1002/cyto.10080