DOI QR코드

DOI QR Code

INDEPENDENTLY GENERATED MODULES

  • Kosan, Muhammet Tamer (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE GEBZE INSTITUTE OF TECHNOLOGY) ;
  • Ozdin, Tufan (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LITERATURE ERZINCAN UNIVERSITY)
  • Published : 2009.09.30

Abstract

A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved; (1) Let $\tau$ = ($\mathbb{T}_\tau,\;\mathbb{F}_\tau$) be a hereditary torsion theory such that $\mathbb{T}_\tau$ $\neq$ Mod-R. Then every $\tau$-torsionfree R-module satisfies (P) if and only if S = R/$\tau$(R) is a division ring. (2) Let $\mathcal{K}$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal{K}$ satisfies (P) if and only if either $\mathcal{K}$ = {0} or S = R/$Soc_\mathcal{K}$(R) is a division ring, where $Soc_\mathcal{K}$(R) = $\cap${I 4\leq$ $R_R$ : R/I$\in\mathcal{K}$}.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Second edition), Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992
  2. D. D. Anderson and J. Robeson, Bases for modules, Expo. Math. 22 (2004), no. 3, 283–296
  3. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488 https://doi.org/10.2307/1993568
  4. J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics (Boca Raton), 281. Chapman & Hall/CRC, Boca Raton, FL, 2006
  5. J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, 29. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986
  6. K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Pure and Applied Mathematics, No. 33. Marcel Dekker, Inc., New York-Basel, 1976
  7. J. Neggers, Cyclic rings, Rev. Un. Mat. Argentina 28 (1977), no. 2, 108–114
  8. W. H. Rant, Minimally generated modules, Canad. Math. Bull. 23 (1980), no. 1, 103– 105
  9. L. J. Ratliff and J. C. Robson, Minimal bases for modules, Houston J. Math. 4 (1978), no. 4, 593–596
  10. B. Stenstrom, Rings of Quotients, Springer-Verlag, 1975
  11. Y. Zhou, A characterization of left perfect rings, Canad. Math. Bull. 38 (1995), no. 3, 382–384
  12. Y. Zhou, Relative chain conditions and module classes, Comm. Algebra 25 (1997), no. 2, 543–557 https://doi.org/10.1080/00927879708825873