Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach

Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정

  • 김병식 (한국건설기술연구원 수자원연구실) ;
  • 김보경 (노이솔루션(주) 기술연구소) ;
  • 권현한 (한국건설기술연구원 수자원연구실)
  • Published : 2009.04.30

Abstract

Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

홍수나 가뭄 등 극한 사상을 예측하여 재해에 대비하거나 또는 수자원을 효율적으로 관리, 배분하기 위하여 강우-유출 모형이 이용되고 있다. 그러나 많은 수문학자들은 강우-유출 모형이 가질 수밖에 없는 불확실성에 대하여 언급하였다. 실제 유역에 내린 강우는 증발과 증산, 차단, 침투 등 여러 과정을 거쳐 유출로 이어지는데, 모형에서는 이러한 복잡한 물리적 과정을 단순화하여 표현하였으므로 불확실성이 반드시 존재할 수밖에 없는 것이다. 따라서 모형으로부터의 모의 결과를 신뢰할 수 있는지를 정량적으로 판단하는 과정이 이루어져야 한다. 본 논문에서는 현재까지 강우-유출 모형의 불확실성을 평가한 선행 연구 중 Montanari와 Brath(2004)가 제시한 Meta-Gaussian 기법을 이용하여 강우-유출 모형 모의 결과에 대한 불확실성을 검토하였다. 이 기법은 모형 오차의 확률 분포형으로부터 신뢰구간의 상한계와 하한계를 추정하는 방법으로 수문모형의 전역적 불확실성(Global Uncertainty)을 정량화할 수 있다. 본 논문에서는 동일한 강우사상에 대한 물리적 기반의 분포형 모형인 $Vflo^{TM}$ 모형과 개념적 준 분포형 모형인 HEC-HMS 모형으로부터 모의된 유출량을 Meta-Gaussian 기법을 적용하여 불확실성을 분석하였다.

Keywords

References

  1. 건설교통부, 강우레이더에 의한 돌발홍수예보시스템 개발(3차년도), pp. 256-257, 2007.
  2. 권현한, 문영일, 단일사상 강우-유출 모형의 불확실성 분석을 통한 홍수빈도곡선 유도(I), 대한토목학회논문집, 제24권, 제3B호, pp. 229-239, 2004.
  3. 홍준범, 김병식, 윤석영, $Vflo^{TM}$ 모형을 이용한 물리기반의 분포형 수문모형의 정확성 평가, 대한토목학회논문집, 제26권, 제6B호, pp. 613-622, 2006.
  4. 김병식, 홍준범, 김보경, 김형수, 중랑천 유역에서 의 $Vflo^{TM}$ 모형의 민감도 분석, 대한토목학회 2007년도 정기학술대회, pp. 2010-2014, 2007.
  5. 김문모, 조원철, 이원환, 수공학에서의 신뢰도 분석방법(I), 한국수자원학회지, 제25권, 제4호, pp. 18-24, 1992.
  6. 김문모, 조원철, 이원환, 수공학에서의 신뢰도 분석방법(II), 한국수자원학회지, 제26권, 제1호, pp. 18-26, 1993.
  7. 오규창, 媒介變數 推定을 통한 降雨-流出 模型의 不確實性 分析, 박사학위논문, 서울대학교, 1998.
  8. 한건연, 김상현, 박재홍, 하천 수질변동의 예측을 위한 추계학적 수질해석 모형의 개발, 한국수자원학회지, 제28권, 제2호, pp. 103-114, 1995.
  9. Beven, K.J., and Binley, A., The future of distributed models: model calibration and uncertainty prediction, Hydrological Processes, Vol. 6, pp. 279-298, 1992. https://doi.org/10.1002/hyp.3360060305
  10. Brath, A., and Rosso, R., Adaptive calibration of a conceptual model for flash flood forecasting, Water Resources research, Vol. 29, pp. 2561-2572, 1993. https://doi.org/10.1029/93WR00665
  11. Brockwell, P.J., and Davis, R.A., Time series: theory and method, second edition, Springer & Verlag, New York. catchment models: the Metropolis algorithm, Journal of Hydrology, Vol. 211, pp.69-85, 1987.
  12. Franchini, M., Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall runoff models, Hydrology Science Journal, Vol. 41, pp. 21-39, 1996. https://doi.org/10.1080/02626669609491476
  13. Haan C.T., Storm D.E., Al-Issa T., Prabhu S., Sabbagh G.J., and Edwards D.R., Effect of parameter distributions on uncertainty analysis of hydrologic models, Transactions of the ASAE, Vol. 41, pp.65-70, 1998. https://doi.org/10.13031/2013.17158
  14. Hosking, J. R. M., and J. R. Wallis, The effect of intersite dependence on regional flood frequency analysis, Water Resour. Res., 24, pp.588-600, 1988. https://doi.org/10.1029/WR024i004p00588
  15. Kelly, K. S., and R. Krzysztofowicz, A bivariate meta-Gaussian density for use in hydrology, Stochastic Hydrol. Hydraul., 11, pp.17-31, 1997. https://doi.org/10.1007/BF02428423
  16. Krzysztofowicz, R. and Kelly, K.S., Hydrologic uncertainty processor for probabilistic river stage Forecasting. Water Resour. Res., 36(11), pp.3265-3277, 2000. https://doi.org/10.1029/2000WR900108
  17. Kuczera, G., Nlfit, a Bayesian Nonlinear Regression Program Suite, Version 1.00g, Department of Civil Engineering and Surveying, University of Newcastle, New South Wales, 1994.
  18. Kuczera, G., and Parent, E., Monte Carlo assessment of parameter uncertainty in conceptual catchment models : the Metropolis algorithm, Journal of Hydrology, Vol. 211, pp.69-85, 1998. https://doi.org/10.1016/S0022-1694(98)00198-X
  19. Laurenson, E.M. and Mein, R.G., RORB Version 3 : Runoff Routing Program - User Manual(2nd Edition), Department of Civil Engineering, Monash University, Monash, Australia, 1983.
  20. Loukas, A., Vasiliades, L., and Dalezios, N.R., Climatic impacts on the runoff generation processes in British Columbia, Canada, Hydrology and Earth System Sciences, Vol. 6, No.2, pp.211-228, 2002. https://doi.org/10.5194/hess-6-211-2002
  21. Melching, C.S., Yen, B.C., and Wenzel, H.G., Output Reliability as Guide for Selection of Rainfall-Runoff Models., Journal of Water Resources Planning and Management, ASCE, Vol. 117, No. 3, pp. 383-398, 1991. https://doi.org/10.1061/(ASCE)0733-9496(1991)117:3(383)
  22. Metropolis, N., The beginning of the Monte Carlo method, Los Alamos Science, No. 15, pp.125-130, 1987.
  23. Montanari, A., and Brath, A., A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resources Research, 40, doi:10.1029/2003WR002540, 2004.
  24. Montanari, A., Rosso, R., and Taqqu, M.S., Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation and simulation, Water Resource Research, Vol. 33, pp.1035-1044., 1997. https://doi.org/10.1029/97WR00043
  25. Moran, P. A. P., Simulation and evaluation of complex water system operations, Water Resour. Res., 6, pp.1737-1742, 1970. https://doi.org/10.1029/WR006i006p01737
  26. MUSIC(Multiple-Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting) Report on the new methodological approach to assess flood forecasting uncertainty, University of Bologna, 2000.
  27. Sabol, G.V., Clark Unit Hydrograph, Transactions of the ASCE, Journal of Hydraulic Engineering, Vol. 114, No. 1, pp.103-111, 1998.
  28. Seo, D. J., Breidenbach, J., Fulton, R., and Miller, D., Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profiles of reflectivity, Journal of Hydrometeorology, Vol. 1, pp. 222-240, 2000. https://doi.org/10.1175/1525-7541(2000)001<0222:RTAORD>2.0.CO;2
  29. Singh, V.P., and Woolhiser, D.A., Mathematical modeling of watershed hydrology, Journal of Hydrology Engineering. Vol. 7, No. 4, pp.270-292, 2002. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270)
  30. Thiemann, M., Trosset, M., Gupta, H. and Sorooshian, S., Bayesian recursive parameter estimation for hydrologic models, Water Resource Research, Vol. 37, pp.2521-2536, 2001. https://doi.org/10.1029/2000WR900405
  31. Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S., A shuffled complex evolution Metropolis Algorithm for optimisation and uncertainty assessment of hydrological model parameters, Water Resource Research, 39, 1201, doi:10.1029/2002WR001642, 2003.
  32. Yar, M., and Chatfield, C., Prediction intervals for the Holt-Winters forecasting procedure, International Journal of Forecasting, Vol. 6, pp. 127-137, 1990. https://doi.org/10.1016/0169-2070(90)90103-I
  33. Zhao, R. J., Zhuang, Y.L., Fang, L. R., Liu, X. R. and Zhang, Q. S., The Xinanjiang model, IAHS Publ., Vol. 129, pp. 351-356, 1980.