DOI QR코드

DOI QR Code

Trypanosome Glycosylphosphatidylinositol Biosynthesis

  • Hong, Yeon-Chul (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Kinoshita, Taroh (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University)
  • 발행 : 2009.09.30

초록

Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domestic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidylinositol (GPI)-anchored proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway. Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome GPI biosynthesis.

키워드

참고문헌

  1. Cross GA. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays 1996; 18: 283-291 https://doi.org/10.1002/bies.950180406
  2. Acosta-Serrano A, Vassella E, Liniger M, Kunz Renggli C, Brun R, Roditi I, Englund PT. The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci USA 2001; 98: 1513-1518 https://doi.org/10.1073/pnas.041611698
  3. Ferguson MA, Homans SW, Dwek RA, Rademacher TW. Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 1988; 239: 753-759 https://doi.org/10.1126/science.3340856
  4. Homans SW, Ferguson MA, Dwek RA, Rademacher TW, Anand R, Williams AF. Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein. Nature 1988; 333: 269-272 https://doi.org/10.1038/333269a0
  5. Field MC, Menon AK, Cross GA. A glycosylphosphatidylinositol protein anchor from procyclic stage Trypanosoma brucei: lipid structure and biosynthesis. EMBO J 1991; 10: 2731-2739
  6. Ferguson MAJ. Site of palmitoylation of a phospholipase C-resistant glycosyl-phosphatidylinositol membrane anchor. Biochem J 1992; 284: 297-300 https://doi.org/10.1042/bj2840297
  7. Ferguson MAJ, Murray P, Rutherford H, McConville MJ. A simple purification of procyclic acidic repetitive protein and demonstration of a sialylated glycosyl-phosphatidylinositol membrane anchor. Biochem J 1993; 291: 51-55
  8. Cross GA. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 1975; 71: 393-417 https://doi.org/10.1017/S003118200004717X
  9. McConville MJ, Ferguson MAJ. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 1993; 294: 305-324
  10. Pays E, Nolan DP. Expression and function of surface proteins in Trypanosoma brucei. Mol Biochem Parasitol 1998; 91: 3-36 https://doi.org/10.1016/S0166-6851(97)00183-7
  11. Clayton CE, Mowatt MR. The procyclic acidic repetitive proteins of Trypanosoma brucei. Purification and post-translational modification. J Biol Chem 1989; 264: 15088-15093
  12. Ferguson MA, Murray P, Rutherford H, McConville MJ. A simple purification of procyclic acidic repetitive protein and demonstration of a sialylated glycosyl-phosphatidylinositol membrane anchor. Biochem J 1993; 291(Pt 1): 51-55
  13. Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112: 2799-2809
  14. McConville MJ, Menon AK. Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids. Mol Membr Biol 2000; 17: 1-16 https://doi.org/10.1080/096876800294443
  15. Udenfriend S, Kodukula K. How glycosylphosphatidylinositolanchored membrane proteins are made. Annu Rev Biochem 1995; 64: 563-591 https://doi.org/10.1146/annurev.bi.64.070195.003023
  16. Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE. Biosynthesis of glycosylphosphatidylinositols in mammalian and unicellular microbes. Biol Chem 1999; 380: 503-523 https://doi.org/10.1515/BC.1999.066
  17. Ikezawa H. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 2002; 25: 409-417 https://doi.org/10.1248/bpb.25.409
  18. Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T. The first step of glycosylphosphatidylinositol biosynthesis biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 1998; 17: 877-885 https://doi.org/10.1093/emboj/17.4.877
  19. Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 2000; 19: 4402-4411 https://doi.org/10.1093/emboj/19.16.4402
  20. Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 2005; 16: 5236-5246 https://doi.org/10.1091/mbc.E05-08-0743
  21. Kawagoe K, Takeda J, Endo Y, Kinoshita T. Molecular cloning of murine Pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function and gene locus. Genomics 1994; 23: 566-574 https://doi.org/10.1006/geno.1994.1544
  22. Nakamura N, Inoue N, Watanabe R, Takahashi M, Takeda J, Stevens VL, Kinoshita T. Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J Biol Chem 1997; 272: 15834-15840 https://doi.org/10.1074/jbc.272.25.15834
  23. Chang T, Milne KG, Guther ML, Smith TK, Ferguson MA. Cloning of Trypanosoma brucei and Leishmania major genes encoding the GlcNAc-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol biosynthesis that is essential to the African sleeping sickness parasite. J Biol Chem 2002; 277: 50176-50182 https://doi.org/10.1074/jbc.M208374200
  24. Urbaniak MD, Crossman A, Chang T, Smith TK, van Aalten DM, Ferguson MA. The N-acetyl-D-glucosaminylphosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol biosynthesis is a zinc metalloenzyme. J Biol Chem 2005; 280: 22831-22838 https://doi.org/10.1074/jbc.M502402200
  25. Sharma DK, Smith TK, Weller CT, Crossman A, Brimacombe JS, Ferguson MAJ. Differences between the trypanosomal and human GlcNAc-PI de-N-acetylases of glycosylphosphatidylinositol membrane anchor biosynthesis. Glycobiology 1999; 9: 415-422 https://doi.org/10.1093/glycob/9.4.415
  26. Smith TK, Crossman A, Borissow CN, Paterson MJ, Dix A, Brimacombe JS, Ferguson MA. Specificity of GlcNAc-PI de-N-acetylase of GPI biosynthesis and synthesis of parasite-specific suicide substrate inhibitors. EMBO J 2001; 20: 3322-3332 https://doi.org/10.1093/emboj/20.13.3322
  27. Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, Nakakuma H, Maeda Y, Kinoshita T. PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell 2003; 14: 4285-4295 https://doi.org/10.1091/mbc.E03-03-0193
  28. Smith TK, Milne FC, Sharma DK, Crossman A, Brimacombe JS, Ferguson MA. Early steps in glycosylphosphatidylinositol biosynthesis in Leishmania major. Biochem J 1997; 326: 393-400 https://doi.org/10.1042/bj3260393
  29. Guther ML, Ferguson MA. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J 1995; 14: 3080-3093
  30. Urbaniak MD, Yashunsky DV, Crossman A, Nikolaev AV, Ferguson MA. Probing enzymes late in the trypanosomal glycosylphosphatidylinositol biosynthetic pathway with synthetic glycosylphosphatidylinositol analogues. ACS Chem Biol 2008; 3: 625-634 https://doi.org/10.1021/cb800143w
  31. Guther ML, Masterson WJ, Ferguson MA. The effects of phenylmethylsulfonyl fluoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J Biol Chem 1994; 269: 18694-18701
  32. Guther ML, Ferguson MA. The role of inositol acylation and inositol deacylation in GPI biosynthesis in Trypanosoma brucei. EMBO J 1995; 14: 3080-3093
  33. Guther ML, Masterson WJ, Ferguson MA. The role of glycolipid C in the GPI biosynthetic pathway in Trypanosoma brucei bloodstream forms. Braz J Med Biol Res 1994; 27: 121-126
  34. Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell 2008; 19: 2069-2082 https://doi.org/10.1091/mbc.E07-08-0740
  35. Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J 2001; 20: 250-261 https://doi.org/10.1093/emboj/20.1.250
  36. Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositolmannosyltransferase I. Mol Biol Cell 2005; 16: 1439-1448 https://doi.org/10.1091/mbc.E04-09-0802
  37. Smith TK, Sharma DK, Crossman A, Brimacombe JS, Ferguson MA. Selective inhibitors of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei. EMBO J 1999; 18: 5922-5930 https://doi.org/10.1093/emboj/18.21.5922
  38. Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T. PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 2005; 280: 9489-9497 https://doi.org/10.1074/jbc.M413867200
  39. Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 1996; 15: 4254-4261
  40. Nagamune K, Nozaki T, Maeda Y, Ohishi K, Fukuma T, Hara T, Schwarz RT, Sutterlin C, Brun R, Riezman H, Kinoshita T. Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc Natl Acad Sci USA 2000; 97: 10336-10341 https://doi.org/10.1073/pnas.180230697
  41. Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T. Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J Biol Chem 2000; 275: 20911-20919 https://doi.org/10.1074/jbc.M001913200
  42. Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T. Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 1999; 274: 35099-35106 https://doi.org/10.1074/jbc.274.49.35099
  43. Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T. GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J Biol Chem 2005; 280: 9728-9734 https://doi.org/10.1074/jbc.M413755200
  44. Menon AK, Schwarz RT, Mayor S, Cross GA. Cell-free synthesis of glycosyl-phosphatidylinositol precursors for the glycolipid membrane anchor of Trypanosoma brucei variant surface glycoproteins. Structural characterization of putative biosynthetic intermediates. J Biol Chem 1990; 265: 9033-9042
  45. Tanaka S, Maeda Y, Tashima Y, Kinoshita T. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 2004; 279: 14256-14263 https://doi.org/10.1074/jbc.M313755200
  46. Guther ML, Leal S, Morrice NA, Cross GA, Ferguson MA. Purification, cloning and characterization of a GPI inositol deacylase from Trypanosoma brucei. EMBO J 2001; 20: 4923-4934 https://doi.org/10.1093/emboj/20.17.4923
  47. Guther ML, Prescott AR, Ferguson MA. Deletion of the GPIdeAc gene alters the location and fate of glycosylphosphatidylinositol precursors in Trypanosoma brucei. Biochemistry 2003; 42: 14532-14540 https://doi.org/10.1021/bi034869g
  48. Hong Y, Nagamune K, Morita YS, Nakatani F, Ashida H, Maeda Y, Kinoshita T. Removal or maintenance of inositol-linked acyl chain in GPI is critical in trypanosome life cycle. J Biol Chem 2006; 281: 11595-11602 https://doi.org/10.1074/jbc.M513061200
  49. Doerrler WT, Ye J, Falck JR, Lehrman MA. Acylation of glucosaminyl phosphatidylinositol revisited. J Biol Chem 1996; 271: 27031-27038 https://doi.org/10.1074/jbc.271.43.27031
  50. Guther ML, Masterson WJ, Ferguson MA. The effects of phenylmethylsulfonyl fluoride on inositol-acylation and fatty acid remodeling in African trypanosomes. J Biol Chem 1994; 269: 18694-18701
  51. Guther ML, Masterson WJ, Ferguson MA. The role of glycolipid C in the GPI biosynthetic pathway in Trypanosoma brucei bloodstream forms. Braz J Med Biol Res 1994; 27: 121-126
  52. Jaquenoud M, Pagac M, Signorell A, Benghezal M, Jelk J, Butikofer P, Conzelmann A. The Gup1 homologue of Trypanosoma brucei is a GPI glycosylphosphatidylinositol remodelase. Mol Microbiol 2008; 67: 202-212 https://doi.org/10.1111/j.1365-2958.2007.06043.x
  53. Fujita M, Jigami Y. Lipid remodeling of GPI-anchored proteins and its function. Biochim Biophys Acta 2008; 1780: 410-420 https://doi.org/10.1016/j.bbagen.2007.08.009
  54. Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 2006; 17: 1410-1420 https://doi.org/10.1091/mbc.E05-11-1005
  55. Ohishi K, Inoue N, Kinoshita T. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 2001; 20: 4088-4098 https://doi.org/10.1093/emboj/20.15.4088
  56. Hong Y, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, Maeda Y, Kinoshita T. Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell 2003; 14: 1780-1789 https://doi.org/10.1091/mbc.E02-12-0794
  57. Nagamune K, Ohishi K, Ashida H, Hong Y, Hino J, Kangawa K, Inoue N, Maeda Y, Kinoshita T. GPI transamidase of Trypanosoma brucei has two previously uncharacterized (trypanosomatid transamidase 1 and 2) and three common subunits. Proc Natl Acad Sci USA 2003; 100: 10682-10687 https://doi.org/10.1073/pnas.1833260100
  58. Ohishi K, Nagamune K, Maeda Y, Kinoshita T. Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge. J Biol Chem 2003; 278: 13959-13967 https://doi.org/10.1074/jbc.M300586200
  59. Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H, Kinoshita T. Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 2000; 11: 1523-1533 https://doi.org/10.1091/mbc.11.5.1523
  60. Meyer U, Benghezal M, Imhof I, Conzelmann A. Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins. Biochemistry 2000; 39: 3461-3471 https://doi.org/10.1021/bi992186o
  61. Vidugiriene J, Vainauskas S, Johnson AE, Menon AK. Endoplasmic reticulum proteins involved in glycosylphosphatidylinositol-anchor attachment: photocrosslinking studies in a cell-free system. Eur J Biochem 2001; 268: 2290-2300 https://doi.org/10.1046/j.1432-1327.2001.02106.x
  62. Spurway TD, Dalley JA, High S, Bulleid NJ. Early events in glycosylphosphatidylinositol anchor addition: substrate proteins associates with the transamidase subunit Gpi8p. J Biol Chem 2001; 276: 15975-15982 https://doi.org/10.1074/jbc.M010128200
  63. Kang X, Szallies A, Rawer M, Echner H, Duszenko M. GPI anchor transamidase of Trypanosoma brucei: in vitro assay of the recombinant protein and VSG anchor exchange. J Cell Sci 2002; 115: 2529-2539
  64. Lillico S, Field MC, Blundell P, Coombs GH, Mottram JC. Essential roles for GPI-anchored proteins in African trypanosomes revealed using mutants deficient in GPI8. Mol Biol Cell 2003; 14: 1182-1194 https://doi.org/10.1091/mbc.E02-03-0167
  65. Benghezal M, Benachour A, Rusconi S, Aebi M, Conzelmann A. Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J 1996; 15: 6575-6583
  66. Hong Y, Nagamune K, Ohishi K, Morita YS, Ashida H, Maeda Y, Kinoshita T. TbGPI16 is an essential component of GPI transamidase in Trypanosoma brucei. FEBS Lett 2006; 580: 603-606 https://doi.org/10.1016/j.febslet.2005.12.075
  67. Low MG. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta 1989; 988: 427-454 https://doi.org/10.1016/0304-4157(89)90014-2
  68. Kinoshita T, Inoue N, Takeda J. Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria. Adv Immunol 1995; 60: 57-103 https://doi.org/10.1016/S0065-2776(08)60584-2
  69. Moran P, Caras IW. Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa. J Cell Biol 1994; 125: 333-343 https://doi.org/10.1083/jcb.125.2.333

피인용 문헌

  1. Immunobiology of African Trypanosomes: Need of Alternative Interventions vol.2010, pp.None, 2009, https://doi.org/10.1155/2010/389153
  2. Lipid metabolism in Trypanosoma brucei vol.172, pp.2, 2009, https://doi.org/10.1016/j.molbiopara.2010.04.001
  3. Synthetic Glycosylphosphatidylinositol as Tools for Glycoparasitology Research vol.14, pp.4, 2009, https://doi.org/10.1089/omi.2009.0138
  4. Trypanosoma brucei: a model micro‐organism to study eukaryotic phospholipid biosynthesis vol.278, pp.7, 2011, https://doi.org/10.1111/j.1742-4658.2011.08012.x
  5. New Insights in Staging and Chemotherapy of African Trypanosomiasis and Possible Contribution of Medicinal Plants vol.2012, pp.None, 2012, https://doi.org/10.1100/2012/343652
  6. Metabolomic analysis of trypanosomatid protozoa vol.181, pp.2, 2009, https://doi.org/10.1016/j.molbiopara.2011.10.003
  7. Knockdown of APC/C-associated genes and its effect on viability and cell cycle of protozoan parasite of Trypanosoma brucei vol.113, pp.4, 2014, https://doi.org/10.1007/s00436-014-3800-5
  8. Molecular modeling and molecular dynamics simulations of GPI 14 in Leishmania major: Insight into the catalytic site for active site directed drug design vol.351, pp.None, 2014, https://doi.org/10.1016/j.jtbi.2014.02.017
  9. The Glycerol‐3‐Phosphate Acyltransferase TbGAT is Dispensable for Viability and the Synthesis of Glycerolipids in Trypanosoma brucei vol.63, pp.5, 2009, https://doi.org/10.1111/jeu.12309
  10. Discovery and Genetic Validation of Chemotherapeutic Targets for Chagas' Disease vol.8, pp.None, 2009, https://doi.org/10.3389/fcimb.2018.00439
  11. Targeting the GPI biosynthetic pathway vol.112, pp.3, 2009, https://doi.org/10.1080/20477724.2018.1442764
  12. Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery vol.26, pp.23, 2009, https://doi.org/10.2174/0929867324666170727110801
  13. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.720536