DOI QR코드

DOI QR Code

Crashworthy behaviour of cellular polymer under constant impact energy

동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구

  • 정광영 (국립공주대학교 공과대학 기계자동차공학부) ;
  • 전성식 (국립공주대학교 공과대학 기계자동차공학부)
  • Published : 2009.08.31

Abstract

Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

본 연구에서는 충돌속도가 다르지만, 총 충돌에너지는 동일하게 유지한 상태에서 충돌을 가했을 때 발포 고분자의 응력-변형률 관계와 충돌에너지 흡수 특성에 관하여 고찰하였다. 이는 충돌시 관성과 변형률 속도에 변화를 주어 재료의 반응거동 및 특성을 파악하기 위함이다. 두가지 다른 밀도(64 $kg/m^3$, 89 $kg/m^3$)를 갖는 발포고분자시편에 대한 준정적시험과 충돌시험이 수행되었다. 또한 Sherwood-Frost 모델과 임펄스 모멘텀 이론의 두가지가 연성된 방정식을이용하여 발포고분자의 구성방정식으로 제안하였다.\ 제안된 구성방정식을 이용하여, 응력변형률 선도를 구하고, 충돌시험결과와 비교하여, 본 구성방정식이 우수하게 결과를 예측할 수 있는 것으로 나타났다.

Keywords

References

  1. Szycher, M., Szycher's Handbook of Polyurethanes Boca Raton: CRC press, 1999
  2. Shim, V.P.W., Tu, Z.H. and Lim, C.T., "Two-dimensional Response of Crushable Polyurethane Foam to Low Velocity Impact," lnt. J. lmpact Eng., Vol. 24, 2000, pp. 703-731 https://doi.org/10.1016/S0734-743X(99)00149-9
  3. Meguid, S.A., Cheon, S.S. and EI-Abbasi, N., "FE Modelling of Deformation Localization in Metallic Foams," Finite Elements in Analysis and Design, Vol.38, 2002, pp.631-643 https://doi.org/10.1016/S0168-874X(01)00096-8
  4. Kim, A., Hasan, M.D.A., Cheon, S.S. and Lee, H.J., "The Constitutive Behavior of Metallic Foams using Nanoindentation Technique and FE ModeJIing," Key Engineering Materials, Vol. 297-300, 2005, pp.1050-1055 https://doi.org/10.4028/www.scientific.net/KEM.297-300.1050
  5. Kim, A, Tunvir, K., Jeong, G.D. and Cheon, S.S., "A Multi-cell FE-model for Compressive Behaviour Analysis of Heterogeneous AI-alloy Foam," Modelling and Simulation in Materials Science and Engineering, Vol. 14, 2006, pp.933-945 https://doi.org/10.1088/0965-0393/14/6/004
  6. Avalle, M., Belingardi, G. and Montanini, R., "Characterization of Polymeric Structural Foams under Compressive Impact Loading by Means of Energy Absorption Diagram," lnt J. lmpact Eng. , Vol. 25, 2001 , pp.455-472 https://doi.org/10.1016/S0734-743X(00)00060-9
  7. Rusch, K.C. "Load-compression Behaviour of Flexible Foams," J. Applied Polymer Science, Vol.13, 1969, pp. 2297-2311 https://doi.org/10.1002/app.1969.070131106
  8. Meinecke, E.A. and Schwaber, D.M., "Energy Absorption in Polymeric Foams," J. Applied Polymer Science, Vol. 14, 1970, pp. 2239-2248 https://doi.org/10.1002/app.1970.070140905
  9. Sherwood, J.A. and Frost, C.C., "Constitutive Modeling and Simulation of Energy Absorbing Polyurethane Foam Under Impact Loading," Polymer Engineering and Science, Vol. 32, 1992, pp. 1138-1146 https://doi.org/10.1002/pen.760321611
  10. Su, X.Y., Yu, T.X. and Reid, S.R., "Inertia-sensitive lmpact Energy-absorbing Structures Part 1: Effects of Inertia and Elasticity," Int. J. Impact Eng. , Vol. 16, 1995, pp. 651-672 https://doi.org/10.1016/0734-743X(94)00061-Z
  11. Su, X.Y., Yu, T.X. and Reid, S.R., "Inertia-sensitive Impact Energy-absorbing Structures Part II: Effect of Strain-rate," Int. J. Impact Eng., Vol. 16, 1995, pp. 673-689 https://doi.org/10.1016/0734-743X(94)00062-2
  12. Tam, L.L. and Calladine, C.R , "lnertia and Strain-rate Effects in a Simple Plate-structure Under Impact Loading," Int J. Impact Eng., Vol. 11, 1991, pp. 349-377 https://doi.org/10.1016/0734-743X(91)90044-G
  13. Langseth, M. Hopperstad, O.S. and Berstad, T., "Crashworthiness of Aluminium Extrusions: Validation of Numerical Simulation, Effects of Mass Ratio and Impact Velocity," Int. J. Impact Eng., Vol. 22, 1999, pp. 829-854 https://doi.org/10.1016/S0734-743X(98)00070-0
  14. Beer, F.P. and Johnston Jr., E.R., Vector Mechanics for Engineers: Dynamics, McGraw-Hill, 1981
  15. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, Pergamon Press, 1998
  16. Paul, A. and Ramamurty, U., "Strain Rate Sensitivity of a Closed-cell Aluminium Foam," Materials Science and Engineering A, Vol. 281 , 2000, pp. 1-7 https://doi.org/10.1016/S0921-5093(99)00750-9
  17. Lopatnikov, S.L., Gama, B.A. and Gillespie Jr J. W., "Modeling the Progressive Collapse Behaviour of Metal Foams," Int. J. Impact Eng., Vol. 34, 2007, pp. 587-595 https://doi.org/10.1016/j.ijimpeng.2005.12.004
  18. 전성식, "통계적 유한요소모텔을 이용한 발포된 금속기지 복합재료의 인장특성," 한국복합재료학회지, 제17권, 2004, pp. 34-39