DOI QR코드

DOI QR Code

A Study on the Magneto-optical Properties and Application of Diluted Magnetic Semiconductor Cd1-xMnxTe

묽은 자성 반도체 Cd1-xMnxTe의 자기 광학적 특성과 응용성 연구

  • Published : 2009.10.31

Abstract

We investigated the magneto-optical properties and application of diluted magnetic semiconductors Cd$_{1-x}$Mn$_x$Te crystals with various Mn contents grown using a vertical Bridgman method. This material crystallizes in the zinc-blende structure for values of x < 0.82. The band-gap energy was depended on Mn mole fraction x linearly and increased with decreasing temperature. The Faraday rotation was increased as the photon energy increased near to that of the fundamental band gap and its increased with increasing Mn mole fraction. Optical isolator using the Cd$_{0.62}$Mn$_{0.38}$Te crystal shows that the isolation and insertion loss are 45 dB and 0.35 dB at 650 nm, respectively.

본 연구에서는 수직 Bridgman 법으로 묽은 자성 반도체 Cd$_{1-x}$Mn$_x$Te 단결정을 성장시켜 Mn의 조성비 변화에 따른 자기광학적 특성과 응용성을 조사하였다. X-선 회절 실험으로부터 x < 0.82 조성에 대하여 zinc-blende 구조임을 확인하였다. 띠 간격 에너지는 온도 감소와 Mn 조성비 증가에 대하여 선형적으로 증가하였다. Faraday 회전은 광 에너지 증가 때문에 띠 간격 에너지 근처에서 증가하였고, Mn 조성비 x가 증가함에 따라 증가하였다. Cd$_{0.62}$Mn$_{0.38}$Te 결정을 이용한 광 아이솔레이트의 아이솔레이션과 삽입손실은 45와 0.35 dB이었다.

Keywords

References

  1. R. R. Galazka, S. Nagata, and P. H. Keesom, Phys. Rev. B, 22, 3344 (1980). https://doi.org/10.1103/PhysRevB.22.3344
  2. J. K. Furdyna, J. Appl. Phys., 53, 7637 (1982). https://doi.org/10.1063/1.330137
  3. J. A. Gaj, R. R. Galazka, and M. Nawrocki, Solid State Commun., 25, 193 (1978). https://doi.org/10.1016/0038-1098(78)91477-1
  4. B. B. Krichevtsov, R. V. Pisarev, A. A. Rzhevskil, and V. N. Gridnev, JEPT Lett., 67, 602 (1998). https://doi.org/10.1134/1.567733
  5. L. Bryja, M. Ciorga, J. Misiewicz, A. Zaleski, P. Becla, and W. C. Chou, J. Cryst. Growth, 197, 694 (1997). https://doi.org/10.1016/S0022-0248(98)00799-4
  6. W. E. Hagston, T. Stirner, and J. Miao, J. Appl. Phys., 82, 5635 (1997). https://doi.org/10.1063/1.366426
  7. S. Nudelman and S. S. Mitra, Optical Properties of Solid (Plenum press, New York, 1998).
  8. A. Tsuzuki, H. Uchida, H. Takagi, P. B. Lim, and M. Inoue, J. Magnetics, 11, 143 (2006). https://doi.org/10.4283/JMAG.2006.11.3.143
  9. J. K. Cho, J. Magnetics, 12, 156 (2007). https://doi.org/10.4283/JMAG.2007.12.4.156
  10. E. Oh, A. K. Ramdas, and J. K. Furdyna, J. Lumin., 52, 183 (1992). https://doi.org/10.1016/0022-2313(92)90243-3
  11. A. E. Turner, R. L. Gunshor, and S. Datta, Appl. Optics, 22, 3152 (1983). https://doi.org/10.1364/AO.22.003152
  12. S. V. Melnichuk, A. I. Savchuk, and D. N. Trifonenko, Phys. Solid State, 38, 731 (1996).
  13. J. J. Dubowski, K. Lebecki, and M. Buchanan, IEEE Transaction on Instrument on Measurements, 42, 332 (1994). https://doi.org/10.1109/19.293442
  14. A. Ebina, T. Koda, and S. Shionoya, J. Phys. Chem. Solids, 26, 1497 (1965). https://doi.org/10.1016/0022-3697(65)90048-X
  15. J. J. Dubowski, K. Lebecki, and M. Buchanan, IEEE Transactions on Instrument on Measurements, 42, 332 (1994). https://doi.org/10.1109/19.293442
  16. E. Muller and W. Gebhardt, IEEE Transactions on Magnetics, 29, 82 (1993). https://doi.org/10.1109/20.195551
  17. Y. H. Hwang, H. K. Kim, S. Cho, Y. H. Um, and H. Y. Park, J. Crystal Growth, 249, 391 (2003). https://doi.org/10.1016/S0022-0248(02)02099-7
  18. T. Koyanagi and K. Matsubara, J. Appl. Phys., 61, 3020 (1987). https://doi.org/10.1063/1.337852
  19. V. Heine and J. A. Van Vechten, Phys. Rev. B, 13, 1622 (1976). https://doi.org/10.1103/PhysRevB.13.1622
  20. D. U. Bartholomew, J. K. Furdyna, and A. K. Ramdas, Phys. Rev. B, 34, 6943 (1986). https://doi.org/10.1103/PhysRevB.34.6943
  21. G. Lutes. Apply. Opt., 27, 1326 (1988). https://doi.org/10.1364/AO.27.001326
  22. T. Tamki and N. Kawamura, J. Appl. Phys., 70, 4581 (1991). https://doi.org/10.1063/1.349094
  23. M. shirasaki and K. Asama, Apply. Opt., 21, 4296 (1982). https://doi.org/10.1364/AO.21.004296