DOI QR코드

DOI QR Code

Characterization of Electrochromic Properties of Au Nanoparticles Incorporated Poly (3, 4-ethylenedioxythiphene) Film

Au 나노입자가 함침된 Poly (3, 4-ethylenedioxythiphene) 고분자 박막의 전기변색 특성연구

  • Published : 2009.10.27

Abstract

The electrochromic properties of Au nanoparticles (NPs) incorporating poly (3, 4-ethylenedioxythiphene) (PEDOT) film were investigated. Trisodium citrate was used for stabilizing Au NPs to control the size. The capping molecules of the Au nanoparticles were exchanged from citrate to 2-mercaptoethanol (2-ME). Water was removed by centrifuge and Au NPs were redispersed in methanol (MeOH). Finally, we obtained ca. 11.7 nm diameter of Au NPs. The effects of 0.15 at% of Au NPs incorporation on the optical, electrical, and eletrochromic properties of PEDOT films were investigated. The electrical property and switching speed of Au/PEDOT film was slightly improved over that of PEDOT film because Au NPs play a hopping site role and affect packing density of the PEDOT chain. Through the ultra violet-visible spectra of PEDOT and Au/PEDOT films at -0.7 V (vs Ag/AgCl), blue shift of maximum absorption peak was observed from PEDOT (585.4 nm) to Au/PEDOT (572.2 nm) due to a shortening of conjugated length of PEDOT. The Au NPs interfered with the degree of conjugation and the maximum absorption peak was shifted to shorter wavelength.

Keywords

References

  1. T. Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci. Chem. Ed., 12, 11 (1974). https://doi.org/10.1002/pol.1974.170120102
  2. C. G. Granqvist, Rev. Solid State Mater. Sci., 16, 291 (1990). https://doi.org/10.1080/10408439008242184
  3. M. Logdlund, R. Lazzaroni, S. stafstrom and W. R. Salaneck, Phys. Rev. Lett., 63, 1841 (1989). https://doi.org/10.1103/PhysRevLett.63.1841
  4. G. Frens, Nat. Phys. Sci., 241, 20 (1973). https://doi.org/10.1038/physci241020a0
  5. K. Murata, M. Suzuki, K. Kajiya, N. Nakamura and H. Ohno, Electrochem. Commun., 11, 668 (2009). https://doi.org/10.1016/j.elecom.2009.01.011
  6. D. V. Leff, P. C. Ohara, J. R. Heath and W. M. Gelbart, J. Phys. Chem., 99, 7036 (1995). https://doi.org/10.1021/j100018a041
  7. S. Link and M. A. El-Sayed, J. Phys. Chem., 103, 4212 (1999). https://doi.org/10.1021/jp984796o
  8. C. Kvarnström, H. Neugebauer, S. Blomquist, H. J. Ahonen, J. Kankare and A. Ivaska, Electrochim. Acta, 44, 2739 (1999). https://doi.org/10.1016/S0013-4686(98)00405-8
  9. S. V. Selvaganesh, J. Mathiyarasu, K. L. N. Phani and V. Yegnaraman, Nanoscale Res. Lett., 2, 546 (2007). https://doi.org/10.1007/s11671-007-9100-6
  10. S. S. Kumar, C. S. Kumar, J. Mathiyarasu and K. L. Phani, Langmuir, 23, 3401 (2007). https://doi.org/10.1021/la063150h
  11. P. Subramanian, N. B. Clark, L. Spiccia, D. R. MacFarlane, B. W.-Jensen and C. Forsyth, Synth. Met., 158, 704 (2008). https://doi.org/10.1016/j.synthmet.2008.04.021
  12. T. Y. Kim, J. E. Kim and K. S. Suh, Polym. Int., 55, 80 (2006). https://doi.org/10.1002/pi.1921
  13. A. Lachkar, A. Selmani, E. Sacher, M. Leclerc and R. Mokhliss, Synth. Met., 66, 209 (1994). https://doi.org/10.1016/0379-6779(94)90069-8
  14. B. L. Groenendaal, F. Jonas, D. Freitag and J. R. Reynolds, Adv. Mater., 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  15. B. C. Sih and M. O. Wolf, Chem. Commun., 3375 (2005). https://doi.org/10.1039/b501448d
  16. S. J. Wang, C. Y. Lee and H. H. Park, Kor. J. Mater. Res., 18, 503 (2008) https://doi.org/10.3740/MRSK.2008.18.9.503
  17. P. Tehrani, J. Isaksson, W. Mammo, M. R. Andersson, N. D. Robinson and M. Berggren, Thin Solid Films, 515, 2485 (2006). https://doi.org/10.1016/j.tsf.2006.07.149
  18. S. Xiong, Y. Xiao, J. Ma, L. Zhang and X. Lu, Macromol. Rapid Commun., 28, 281 (2007). https://doi.org/10.1002/marc.200600717