Bacterial Dynamics of Biofilm Development During Toluene Degradation by Burkholderia vietnamiensis G4 in a Gas Phase Membrane Bioreactor

  • Kumar, Amit (Research Group of EnVOC, Faculty of Bioscience Engineering, Ghent University) ;
  • Dewulf, Jo (Research Group of EnVOC, Faculty of Bioscience Engineering, Ghent University) ;
  • Wiele, Tom Van De (Laboratory Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University) ;
  • Langenhove, Herman Van (Research Group of EnVOC, Faculty of Bioscience Engineering, Ghent University)
  • Published : 2009.09.30

Abstract

In this study, the dynamics of living cells (LC) and dead cells (DC) in a laboratory-scale biofilm membrane bioreactor for waste gas treatment was examined. Toluene was used as a model pollutant. The bacterial cells were enumerated as fluoromicroscopic counts during a 140 operating day period using BacLight nucleic acid staining in combination with epifluorescence and confocal laser scanning microscopy (CSLM). Overall, five different phases could be distinguished during the biofilm development: (A) cell attachment, (B) pollutant limitation, (C) biofilm establishment and colonization, (D) colonized biofilm, and (E) biofilm erosion. The bioreactor was operated under different conditions by applying different pollutant concentrations. An optimum toluene removal of 89% was observed at a loading rate of 14.4 kg $m^{-3}d^{-1}$. A direct correlation between the biodegradation rate of the reactor and the dynamics of biofilm development could be demonstrated. This study shows the first description of biofilm development during gaseous toluene degradation in MBR.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. H. Scleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 469
  2. APHA. 1980. Standard methods for the examination of water and waste water. 15th Ed. American Public Health Association, Washington, DC
  3. Boulos, L., M. Prevost, B. Barbeau, J. Coallier, and R. Desjardins. 1999. $LIVE/DEAD^{{\circledR}}$ $BacLight^{TM$: Application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Meth. 37: 77-86 https://doi.org/10.1016/S0167-7012(99)00048-2
  4. Characklis, W. 1981. Fouling biofilm development: A process analysis. Biotechnol. Bioeng. 23: 1923-1960 https://doi.org/10.1002/bit.260230902
  5. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711-745 https://doi.org/10.1146/annurev.mi.49.100195.003431
  6. Duffy, G. and J. J. Sheridan. 1998. Viability staining in a direct count rapid method for the determination of total viable counts on processed meats. J. Microbiol. Meth. 31: 167-174 https://doi.org/10.1016/S0167-7012(97)00099-7
  7. Jones, W., R. G. Mirpuri, S. Villaverde, Z. Lewandowski, and A. Cunningham. 1997. The effect of bacterial injury on toluene degradation and respiration rates in vapor phase bioreactors. Wat. Sci. Tech. 36: 85-92
  8. Kirchner, K., S. Wagner, and H. J. Rehm. 1992. Exhaust gas purification using biocatalysts (fixed bacteria monocultures) - the influence of biofilm diffusion rate ($O_2$) on the overall reaction rate. Appl. Microbiol. Biotechnol. 37: 277-279
  9. Kumar, A., J. Dewulf, and H. Van Langenhove. 2008. Membrane based biological waste gas treatment. Chem. Eng. J. 136: 82-91 https://doi.org/10.1016/j.cej.2007.06.006
  10. Kumar, A., J. Dewulf, M. Luvsanjamba, and H. Van Langenhove. 2008. Continuous operation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4. Chem. Eng. J. 140: 193-200 https://doi.org/10.1016/j.cej.2007.09.039
  11. Kumar, A., J. Dewulf, A. Vercruyssen, and H. Van Langenhove. 2008. Performance of a composite membrane bioreactor treating toluene vapors: Inocula selection, reactor performance and behavior under transient conditions. Biores. Technol. (accepted)
  12. Lawrence, J. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1993. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558-6567
  13. Leuko, S., A. Legat, S. Fendrihan, and H. Stan-Lotter. 2004. Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualisation of microorganisms in environmental hypersaline samples. Appl. Environ. Microbiol. 70: 6884-6886 https://doi.org/10.1128/AEM.70.11.6884-6886.2004
  14. Lloyd, D. and A. H. Vigour. 1995. Vitality and viability of microorganisms. FEMS Microbiol. Lett. 133: 1-7 https://doi.org/10.1111/j.1574-6968.1995.tb07852.x
  15. Love, N. and P. Grady. 1995. Impact of growth in benzoate and m-toluate liquid media on culturability of Pseudomonas putida on benzoate and toluate plates. Appl. Environ. Microbiol. 61: 3142-3144
  16. Mirpuri, R., W. Jones, and J. D. Bryers. 1997. Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol. Bioeng. 53: 535-546 https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6<535::AID-BIT1>3.0.CO;2-N
  17. Moller, S., D. Korber, G. Wolfaardt, S. Molin, and D. Caldwell. 1997. Impact of nutrient composition on a degradative biofilm community. Appl. Environ. Microbiol. 63: 2432-2438
  18. Neu, T. R. and J. R. Lawrence. 1997. Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol. Ecol. 24: 11-25 https://doi.org/10.1111/j.1574-6941.1997.tb00419.x
  19. Okkerse, W., S. Ottengraf, R. Diks, B. Osinga-Kuipers, and P. Jacobs. 1999. Long term performance of biotrickling filters removing a mixture of volatile organics from an artificial waste gas: Dichloromethane and methylmethacrylate. Bioproc. Eng. 20: 49-57 https://doi.org/10.1007/s004490050559
  20. Schonduve, P., M. Sara, and A. Friedl. 1996. Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for water gas cleaning. Appl. Microbiol. Biotechnol. 45: 286-292 https://doi.org/10.1007/s002530050685
  21. Schroeder, E. D. 2002. Trends in application of gas-phase bioreactor. ReV. Environ. Sci. Bio/Technol. 1: 65-74 https://doi.org/10.1023/A:1015183512317
  22. Singh, R., D. Paul, and R. K. Jain. 2006. Biofilms: Implications in bioremediation. Trends Microbiol. 14: 389-397 https://doi.org/10.1016/j.tim.2006.07.001
  23. Tolker-Nielsen, T. and S. Molin. 2000. Spatial organization of microbial biofilm communities. Microb. Ecol. 40: 75-84
  24. Van Langenhove, H., I. De Bo, P. Jacobs, K. Demeestere, and J. Dewulf. 2004. A membrane bioreactor for the removal of dimethyl sulphide and toluene from waste air. Wat. Sci. Technol. 50: 215-224
  25. Villaverde, S. and M. Fernandez. 1997. Non-toluene-associated respiration in a Pseudomonas putida 54G biofilm grown on toluene in a flat vapor bioreactor. Appl. Microbiol. Biotechnol. 48: 357-362 https://doi.org/10.1007/s002530051062
  26. Villaverde, S., R. G. Mirpuri, Z. Lewandowski, and W. L. Jones. 1997. Physiological and chemical gradients in a Pseudomonas putida 54G biofilm degrading toluene in a flat plate vapor phase bioreactor. Biotechnol. Bioeng. 56: 361-371 https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<361::AID-BIT2>3.0.CO;2-M