DOI QR코드

DOI QR Code

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films

ALD로 성장된 ZnO박막에 대한 질소이온 조사효과

  • Kim, H.S. (Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University)
  • 김희수 (단국대학교 응용물리학과, 나노센서바이오텍 연구소)
  • Published : 2009.09.30

Abstract

ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

ZnO는 육방정계결정구조의 물질로서 3.37 eV의 넓은 띠 간격과 60 meV의 큰 exciton 결합에너지에 따른 높은 효율의 자외선발광으로 짧은 파장의 빛 (녹, 청, 자외선)을 내는 LED (Light Emitting Diode) 분야에서 관심을 기울이고 있는 물질이다. LED제작을 위해서는 n형의 ZnO와 p형의 ZnO가 필요하지만 기본적으로 ZnO은 n형이므로 신뢰성 있는 p형 ZnO박막을 제작하기 위한 노력이 기울여지고 있다. 본 연구에서는 ALD (Atomic Layer Deposition)로 제작된 ZnO박막에 20 keV의 에너지를 갖는 질소이온을 $10^{13}{\sim}10^{15}ions/cm^2$로 조사한 후 Hall 효과 측정장치를 이용하여 질소이온 조사에 따른 전기적 특성변화를 조사하였다.

Keywords

References

  1. Min Suk Oh, Lee Kimoon, Lee Kwang H, Sung Hoon Cha, Jeong Min Choi, Lee Byoung H, Sung Myung M, and Im Seongil, Advanced Functional Materials, 19, 726-732 (2009) https://doi.org/10.1002/adfm.200801155
  2. S. J. Lim, S. Kwon, and H. Kim, Applied Physics Letters, 91, 183517-183519 (2007) https://doi.org/10.1063/1.2803219
  3. H. C. Cheng, C. F. Chen, and C. Y. Tsay, Applied Physics Letters, 90, 012113-012115 (2007) https://doi.org/10.1063/1.2404590
  4. E. Bellingeri, D. Marre, I. Pallecchi, L, Pellegrino, and A. S. Siri, Applied Physics Letters, 86, 012109- 012111 (2005) https://doi.org/10.1063/1.1844034
  5. Elvira M. C. Fortunato, Pedro M. C. Barquinha, Ana C. M. B. G. Pimentel, Alexandra M. F. Gon$\delta$alves, Ant$\dot{o}$nio J. S. Marques, Rodrigo F. P.Martins, and Luis M. N. Pereira, Applied Physics Letters, 85, 2541-2543 (2004) https://doi.org/10.1063/1.1790587
  6. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Applied Physics Letters, 82, 1117-1119 (2003) https://doi.org/10.1063/1.1553997
  7. S. J. Lim, S. Kwon, and H. Kim, Thin Solid Films, 516, 1523-1528 (2008) https://doi.org/10.1016/j.tsf.2007.03.144
  8. A. W. Ott and R. P. H. Chang, Materials Chemistry and Physics, 58, 132-138 (1999) https://doi.org/10.1016/S0254-0584(98)00264-8
  9. S. Christoulakis, M. Suchea, M. Katharakis, N. Katsarakis, E. Koudoumas, and G. Kiriakidis, Rev. Adv. Mater. Sci., 10, 331-334 (2005)
  10. X. D. Chen, C. C. Ling, S. Fung, and C. D. Beling, Applied Physics Letters, 88, 132104-132106 (2006) https://doi.org/10.1063/1.2190444
  11. N. H. Nickel and F. Friedrich, Applied Physics Letters, 87, 211905-211907 (2005) https://doi.org/10.1063/1.2133917
  12. L. Dunlop, A. Kursumovic, and J. L. MacManus-Driscoll, Applied Physics Letters, 93, 172111-172113 (2008) https://doi.org/10.1063/1.3000604
  13. M. Schuisky and J. W. Elam, Applied Physics Letters, 81, 180-182 (2002) https://doi.org/10.1063/1.1490413
  14. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Applied Physics Letters, 86, 51113-151115 (2005)
  15. J. Lim and C. Lee, Thin Solid Films, 515, 3335-3338 (2007) https://doi.org/10.1016/j.tsf.2006.09.007
  16. Semyung Kwon, Seokhwan Bang, Seungjun Lee, Sunyeol Jeon, Wooho Jeong, Hyungchul Kim, Su Cheol Gong, Ho Jung Chang, Hyung-ho Park, and Hyeongtag Jeon, Semicond. Sci. Technol. 24, 035015 (2009) https://doi.org/10.1088/0268-1242/24/3/035015
  17. Yuming Sun and Hezhou Wang, Physica B, 325, 157-163 (2003) https://doi.org/10.1016/S0921-4526(02)01517-X
  18. S. J. Noh, S. K. Lee, E. H. Kim, and Y. J. Kong, Current Applied Physics, 6, 171-173 (2006) https://doi.org/10.1016/j.cap.2005.07.033
  19. 김희수, 한국진공학회지 제16권 3호, 205-209 (2007) https://doi.org/10.5757/JKVS.2007.16.3.205
  20. 이두형, 권새롬, 이석관, 노승정, 한국진공학회지 제18권 4호, 296-301 (2009) https://doi.org/10.5757/JKVS.2009.18.4.296
  21. Chongmu Lee, Su Young Park, and Jongmin Lim,Journal of the Korean Physical Society, 50, 590-593 (2007) https://doi.org/10.3938/jkps.50.590
  22. Tahir Zaidi, William E. Fenwick, Andrew Melton, Nola Li, Shalini Gupta, Hongbo Yu, Abdallah Ougazzaden, and Ian Ferguson, Journal of Crystal Growth, 310, 5011-5015 (2008) https://doi.org/10.1016/j.jcrysgro.2008.07.124
  23. Zhiyan Xiao, Yichun Liu, Jiying Zhang, Dongxu Zhao, Youming Lu, Dezhen Shen, and Xiwu Fan, Semicond. Sci. Technol., 20, 796-800 (2005) https://doi.org/10.1088/0268-1242/20/8/027
  24. Veeramuthu Vaithianathan, Yong Hee Lee, Byung-Teak Lee, Shunichi Hishita, and Sang Sub Kim, Journal of Crystal Growth, 287, 85-88 (2006) https://doi.org/10.1016/j.jcrysgro.2005.10.048
  25. Kun Wang, Zhibo Ding, Tianxiang Chen, Di Chen, Shude Yao, Zhuxi Fu, Nuclear Instruments, and Methods in Physics Research B 266, 2962-2965 (2008) https://doi.org/10.1016/j.nimb.2008.03.148
  26. Shu-Yi Tsai, Yang-Ming Lu, and Min-Hsiung Hon, Journal of Physics: Conference Series 100, 042037 (2008) https://doi.org/10.1088/1742-6596/100/4/042037
  27. Sakaguchi Isao, SATO Yoshiyuki, Haneda Hajime, and Ohashi Naoki, Japanese Journal of Applied Physics, 45, 7053-7055 (2006) https://doi.org/10.1143/JJAP.45.7053
  28. X. D. Zhang, C. L. Liu, Z. Wang, Y. Y. Lu, and L. J. Yin, Nuclear Instruments and Methods in Physics Research B 254, 83-86 (2007) https://doi.org/10.1016/j.nimb.2006.10.074
  29. http://www.srim.org/
  30. F. Tuomisto, V. Ranki, and K. Saarinen, Physical Review Letters 91, 205502 (2003) https://doi.org/10.1103/PhysRevLett.91.205502
  31. K. P. Vijayakumar, P. M. Ratheesh Kumar, C. Sudha Kartha, K. C. Wilson, F. Singh, K. G. M. Nair, and Y. Kashiwaba, Phys. Stat. Sol. (A)203, No. 5, 860-867 (2006) https://doi.org/10.1002/pssa.200521351

Cited by

  1. Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.483