DOI QR코드

DOI QR Code

Unconventional Patterning for Organic Functional Materials Applicable to Renewable Energy Devices

유기물 기반의 새로운 패터닝 기법과 이를 이용한 신재생 에너지 소자

  • Kim, Sung-Jin (Center for Organic Photonics and Electronics (COPE) and School of Electrical and Computer Engineering, Georgia Institute of Technology)
  • 김성진 (조지아공과대학교 전자전기컴퓨터공학과)
  • Published : 2009.09.30

Abstract

We report on a new patterning technique for organic functional materials applicable to organic photovoltacis (OPVs). The unconventioal patterning technique, $O_2$ plsama-etching selectively perfluoro-alkyl fluorosilanes, is used for producing a bulk-heterojunction active layer with poly(3-hexylthiophene) as the electron donor and [6,6]-phenyl-$C_{61}$ butyric acid methyl ester as the electron acceptor. The patterning with reduced leakage path and parasitic capacitance suggests a way for fabrication of OPVs with higher energy conversion efficiency.

유기물 기반의 전자 소자에서 소자간의 전기적인 전류 흐름 및 기생저항 등을 차단하기 위하여 표면 에너지를 이용한 새로운 패터닝 기법을 제안하였다. 소수성의 perfluoro-alkyl fluorosilanes을 플라즈마 이온 에칭을 이용하여 선택적으로 친수성으로 변환한 뒤 wettability 현상을 통해 유기 물질을 자동 패터닝 하였다. 또한 이 기법을 이용하여 $V_{oc}$ (open circuit voltage): 482 mV, $J_{sc}$ (short circuit current density): 2.4 mA/$cm^2$, FF (Fill factor): 0.58, $\eta$ (Efficiency): 0.95 % 의 특성을 보이는 bulk-이종접합 유기 태양 전지 소자를 제작하였다.

Keywords

References

  1. B. C. Krummacher, V.-E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, Appl. Phys. Lett. 88, 113506 (2006) https://doi.org/10.1063/1.2186080
  2. S. R. Forrest, Nature 428, 911 (2004) https://doi.org/10.1038/nature02498
  3. C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000) https://doi.org/10.1063/1.1306639
  4. M. M. Ling and Z. Bao, Chem. Mater. 16, 4824 (2004) https://doi.org/10.1021/cm0496117
  5. Y. Noguchi, T. Sekitani, and T. Someya, Appl. Phys. Lett. 89, 253507 (2006) https://doi.org/10.1063/1.2416001
  6. B. Kippelen and J.-L. Bredas, Energy & Environmental Science 2, 251 (2009) https://doi.org/10.1039/b812502n
  7. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, Polymer Reviews 48, 531 (2008) https://doi.org/10.1080/15583720802231833
  8. A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986) https://doi.org/10.1063/1.97417
  9. F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, Science 265, 1684 (1994) https://doi.org/10.1126/science.265.5179.1684
  10. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  11. S.-J. Kim, Journal of the Korean Vacuum Society 18, 147 (2009) https://doi.org/10.5757/JKVS.2009.18.2.147
  12. S.-J. Kim, Journal of the Korean Vacuum Society 18, 254 (2009) https://doi.org/10.5757/JKVS.2009.18.4.254