DOI QR코드

DOI QR Code

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study

가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발

  • Published : 2010.01.01

Abstract

A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

이온교환막 연료전지는 전세계적인 에너지 고갈 문제와 온실효과에 대한 대응책의 하나이다. 특히, 이온교환막 연료전지는 전기화학반응에 의해 전기를 생산함과 동시에 열을 발생하기 때문에 가정용으로 적용하기에 적당하다. 가정용 연료전지의 열관리 목적은 연료전지가 최적조건에서 운전할 수 있도록 적절히 온도를 제어해 주는 것으로, 본 연구에서는 부하 변화 시 가정용 연료전지 시스템의 응답 특성과 열관리 특성을 알아보기 위한 해석 모델을 개발하였다. 열관리 해석 모델은 연료전지의 온도를 조절하기 위한 펌프와 열교환기로 구성된 1차측, 주택에 온수를 공급하기 위한 탱크와 펌프 계통의 2차 측으로 구성되었다. 부하를 순차적으로 증가시킬 때와 감소시킬 때를 구분하여 열관리 계통의 응답특성 을 확인하였다. 결과적으로 탱크의 초기 승온에 많은 시간이 소요되기 때문에 부하를 다단으로 오랜 시 간 동안 서서히 증가시키면서 시스템 응답 특성을 확인하였다. 또한, 본 연구에서는 가정용 연료전지의 부하 변화시의 열관리 특성을 고려한 운전 전략에 대해서도 조사하였다.

Keywords

References

  1. Won, J., Hwang, K., Lewald, L., Aicher, T., Jorissen, L. and Kim, K., 2009, "Mid- and Long Term Strategic Road-Map For Development Of Green Energy Industry," pp. 9-34
  2. Yu, S., Kim, H.S., Lee, Y.D. and Ahn, K. Y., 2008, "A Dynamic model of PEMFC System For The Simulation Of Residential Power Generation," Proceedings of FuelCell2008
  3. König, P., Weber, A., Lewald, L., Aicher, T., Jörissen, L., Ivers-Tiffée, E., Szolak, R., Brendel, M. and Kaczerowski, J., 2005, "Testing and Model-Aided Analysis of a 2 kW_{el} PEMFC CHP-System," Journal of Power Sources, Vol. 145, pp. 327-335 https://doi.org/10.1016/j.jpowsour.2005.02.051
  4. Selamogullari, U. S., Willemain, T. R. and Torrey, D. A., 2007, "A System Approach for Sizing a Stand-alone Residential PEMFC Power System," Journal of Power Sources, Vol. 171, pp. 802-810 https://doi.org/10.1016/j.jpowsour.2007.06.024
  5. Sharkh, M., Rahman, A., Alam, M., Byrne, P., Sakla, A. and Thomas, T., "A Dynamic Model For A Stand-Alone PEM Fuel Cell Power Plant For Residential Applications," Journal Power Sources, Vol. 138, pp. 199-204 https://doi.org/10.1016/j.jpowsour.2004.06.037
  6. Uzunoglu, M., Onar, O. and Alam, M., "Dynamic Behavior of PEM FCPPs Under Various Load Conditions And Voltage Stability Analysis For Stand-Alone Residential Applications," Journal of Power Sources, Vol. 168, pp. 240-250 https://doi.org/10.1016/j.jpowsour.2007.02.045
  7. Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., "Polymer Electrolyte Fuel Cell Model," Journal of Electrochemical Society, Vol. 138, No. 8, 1991, pp. 2334-2342 https://doi.org/10.1149/1.2085971
  8. Broka, K. and Ekdunge, P., "Modeling the PEM Fuel Cell Cathode," Journal of Applied Electrochemistry, Vol. 27, 1997, pp. 281-289 https://doi.org/10.1023/A:1018476612810
  9. Jay T. Pukrushpan, Anna G. Stefanopoulou, and Huei Peng, 2004, Control of Fuel Cell Power Systems, Springer, London, First Edition, pp. 15-20
  10. Yu, S., 2006, "Thermal Modeling of the Proton Exchange Membrane Fuel Cell," Ph.D. Dissertation, University of Michigan
  11. Incropera, F.P. and DeWitt, D.P., 1996, Fundamentals of Heat and Mass Transfer, JOHN WILEY & SONS, New York, Fourth Edition, pp. 420-450
  12. Ahluwalia, R., K., Wang, X., Doss, E., D. and Kumar, R., 2005, "Fuel Cell System Analysis," USDOE Progress Report, VII.H.7, pp. 1014-1018
  13. Yu, S., Lee, Y.D., Bae, H., Hwang, J. and Ahn, K. Y., 2009, “Mass and Heat Transfer Analysis Of Membrane Humidifier With A Simple Lumped Mass Model," Trans. of the KSME, Section B, Vol. 33, No. 8, pp. 596-603 https://doi.org/10.3795/KSME-B.2009.33.8.596

Cited by

  1. Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application vol.36, pp.12, 2012, https://doi.org/10.3795/KSME-B.2012.36.12.1185