DOI QR코드

DOI QR Code

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion

순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성

  • Kim, Hak-Joon (Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Han, Bang-Woo (Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Oh, Won-Seok (Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Hwang, Gyu-Dong (Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Kim, Yong-Jin (Environment and Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Hong, Jeong-Hee (KC Cottrell Co., Ltd.)
  • Published : 2010.01.01

Abstract

In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

본 연구에서는 순환방식의 1000 CMH급 전기집진장치 성능평가 시스템 구축하여, 대용량 순산소 연소 장치 없이 순산소 연소가스 모사 조건(고농도 $CO_2$ 조건)에서 엣지-평판형 전기집진장치를 방전극 형상, 집진판 간격, 유입속도, 가스조성 및 분진 입경에 따라 성능을 평가하였다. $CO_2$ 70% 조건에서 3 종 방전극에 대해 성능 비교를 한 결과, 방전극 편 면적이 넓은 방전극이 상대적으로 높은 포집효율을 나타내었다. 또한 유입속도가 감소할수록, 분진 입경이 증가할수록, 집진판 간격이 좁을수록 분진 집진 효율이 증가하였으나, $CO_2$ 농도가 증가할수록 효율이 감소하였다. 그러므로 $CO_2$ 농도가 높을 것으로 예상되는 순산소 연소 등 배기가스 조건에 적용되는 전기집진장치를 설계할 경우, 기존과 동일한 단위 가스 체적 당 코로나 전력 조건에서 집진장치 내부 유속을 줄이거나 집진판 간격을 좁히는 설계변화가 요구되며, 방전극의 경우 방전편 면적이 넓으면서 코로나 전류가 높은 방전극이 적용되야 할 것으로 판단된다.

Keywords

References

  1. Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P. and Wall, T. F., 2005, "Oxy-Fuel Combustion Technology for Coal-Fired Power Generation," Process in Energy and Combustion Science, Vol. 31, pp. 283-307 https://doi.org/10.1016/j.pecs.2005.07.001
  2. Suriyawong, A., Hogan C.J. Jr, Jiang, J. and Biswas, P., 2008, "Charged Fraction and Electrostatic Collection of Ultrafine and Submicron Particles Formed During O_{2}-CO_{2} Coal Combustion," Fuel, Vol. 87, pp. https://doi.org/10.1016/j.fuel.2007.07.024
  3. Ahn, J., Kim, Y.J. and Choi, K.S., 2007, "Oxy-Fuel Combustion Boiler for CO2 Capture: 50 kW Class Model Test and Numerical Simulation," KSME, Fall Annual Conference, pp. 519-524
  4. Kim, H.J., Choi, W.Y., Bae, S.H., Hong, J.G. and Shin, H.D., 2008, "A Study on Oxy-Fuel Combustion System with Multi-Jet Burner-Numerical Simulation with PDF Combustion Model," Trans. of the KSME (B), Vol. 32, No. 7, pp. 54-512 https://doi.org/10.3795/KSME-B.2008.32.7.504
  5. Park, H.J., 1992, "Experience of Electrostatic Precipitator Application at Fossil Power Plant," Journal of air-conditioning and refrigerating engineers of Korea, Vol. 21, No. 1, pp. 40-47
  6. Sheng, C., Li, Y., Liu, X., Yao, H. and Xu, M., 2007, "Ash Particle Formation During O_{2}/CO_{2} Combustion of Pulverized Coals," Fuel Processing Technology, Vol. 88, pp. 1021-1028 https://doi.org/10.1016/j.fuproc.2007.06.009
  7. Mikoviny, T., Kocan, M., Matejcik, S., Mason, N.J. and Skalny, J.D., 2004, "Experimental Study of Negative Corona Discharge in Pure Carbon Dioxide and Its Mixtures with Oxygen," Journal of physics D: Applied physics, Vol. 37, pp. 64-73 https://doi.org/10.1088/0022-3727/37/1/011
  8. Zhuang, Y. and Biswas, P., 2001, "Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor," Energy & Fuels, Vol. 15, pp. 510-516 https://doi.org/10.1021/ef000080s
  9. Turner, J.H., Lawless, P.A., Yamamoto, T., Coy, D.W., Greiner, G.P., Mckenna, J.D. and Vatavuk, W.M., 1992, Electrostatic precipitators. in Buonicore, A. J. and Davis, W.T.(Eds), Air pollution Engineering Manual, Air and Waste Management Association, New York, pp. 89-113
  10. Hinds, W.C., 1999, Aerosol Technology, Awiley-Interscience Publication, New York, pp. 316-345
  11. White, H.J., 1963, Industrial Electrostatic Precipitation, Addison-Wesley Publication, Portland, pp. 331-333
  12. Oglesby, S. and Nichols, G.B., 1978, Electrostatic Precipitation, Marcel dekker, INC., New York, pp. 97-104

Cited by

  1. Characteristics of Charging and Collection of 10-nm-Class Ultrafine Nanoparticles in an Electrostatic Precipitator vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-B.2011.35.10.1013