DOI QR코드

DOI QR Code

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, June-Key (Department of Materials Science and Engineering, Chonnam National University) ;
  • Soun, Woo-Sik (New Technology and Analysis Department, National Nanofab Center) ;
  • Jeong, Hyun-Dam (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2010.09.16
  • Accepted : 2010.09.30
  • Published : 2010.12.20

Abstract

In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Keywords

References

  1. Křepelka, J. I. Jemna Mechanika A Optika. 1992, 3, 53.
  2. Dobrowolski, J. A.; Poitras, D.; Ma, P.; Valkil, H.; Acree, M. Appl Optics. 2002, 41, 3075. https://doi.org/10.1364/AO.41.003075
  3. Xi, J.-Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M.; Lin, S.-Y.; Liu, W.; Smart, J. A. Nat. Photonics. 2007, 1, 176.
  4. Schubert, E. F.; Kim, J. K.; Xi, J.-Q. Phys. Stat. Sol. B 2007, 244, 3002. https://doi.org/10.1002/pssb.200675603
  5. Xi, J.-Q.; Ojha, M.; Plawsky, J. L.; Gill, W. N.; Kim, J. K.; Schubert, E. F. Appl. Phys. Lett. 2005, 87, 031111. https://doi.org/10.1063/1.1997270
  6. Xi, J.-Q.; Kim, J. K.; Schubert, E. F. Nano Lett. 2005, 5, 1385. https://doi.org/10.1021/nl050698k
  7. Konjhodzic, D.; Schröter, S.; Marlow, F. Phys. Stat. Sol. A 2007, 204, 3676. https://doi.org/10.1002/pssa.200776405
  8. Xi, J.-Q.; Kim, J. K.; Schubert, E. F.; Ye, D.; Lu, T.-M.; Lin, S.-Y. Opt. Lett. 2006, 31, 601. https://doi.org/10.1364/OL.31.000601
  9. Yamaguchi, M.; Nakayama, H.; Yamada, K.; Imai, H. Opt. Lett. 2009, 34, 2060. https://doi.org/10.1364/OL.34.002060
  10. Falcaro, P.; Malfatti, L.; Kidchob, T.; Giannini, G.; Falqui, A.; Casula, M. F.; Amenitsch, H.; Marmiroli, B.; Grenci, G.; Innocenzi, P. Chem. Mater. 2009, 21, 2055. https://doi.org/10.1021/cm802750w
  11. Grosso, D.; Cagnol, F.; Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Amenitsch, H.; Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Adv. Funct. Mater. 2004, 14, 309. https://doi.org/10.1002/adfm.200305036
  12. Penard, A.-L.; Gacoin, T.; Boilot, J.-P. Acc. Chem. Res. 2007, 40, 895. https://doi.org/10.1021/ar600025j
  13. Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538. https://doi.org/10.1126/science.281.5376.538
  14. Xia, B. Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater. 2000, 12, 693. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  15. Teh, L. K.; Tan, N. K.; Wong, C. C.; Li, S. Appl. Phys. A 2005, 81, 1399. https://doi.org/10.1007/s00339-004-3095-y
  16. Landfester, K. Macromol. Rapid Commun. 2001, 22, 896. https://doi.org/10.1002/1521-3927(20010801)22:12<896::AID-MARC896>3.0.CO;2-R
  17. Musyanovych, A.; Rossmanith, R.; Tontsch, C.; Landfester, K. Langmuir 2007, 23, 5367. https://doi.org/10.1021/la0635193
  18. Adachi, E.; Dimitrov, A. S.; Nagayama, K. Langmuir 1995, 11, 1057. https://doi.org/10.1021/la00004a003
  19. Micheletto, R.; Fukuda, H.; Ohtsu, M. Langmuir 1995, 11, 3333. https://doi.org/10.1021/la00009a012
  20. Li, Y.; Kunitake, T.; Fujikawa, S. Colloids Surf. A 2006, 275, 209. https://doi.org/10.1016/j.colsurfa.2005.09.045
  21. Himcinschi, C.; Friedrich, M.; Frühauf, S.; Streiter, I.; Schulz, S. E.; Gessner, T.; Baklanov, M. R.; Mogilnikov, K. P.; Zahn, D. R. T. Anal. Bioanal. Chem. 2002, 374, 654. https://doi.org/10.1007/s00216-002-1392-x