DOI QR코드

DOI QR Code

A Scientific Approach for Improving Sensitivity and Selectivity of Miniature, Solid-state, Potentiometric Carbon Monoxide Gas Sensors by Differential Electrode Equilibria Mechanism

전극평형전위차 가스 센싱 메커니즘을 적용한 일산화탄소 소형 전위차센서의 특성 향상에 관한 연구

  • Park, Jun-Young (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, Ji-Hyun (Department of Advanced Materials Engineering, Sejong University) ;
  • Park, Ka-Young (Department of Advanced Materials Engineering, Sejong University) ;
  • Wachsman, Eric D. (Department of Materials Science and Engineering, University of Florida)
  • 박준영 (세종대학교 신소재공학과) ;
  • 김지현 (세종대학교 신소재공학과) ;
  • 박가영 (세종대학교 신소재공학과) ;
  • Published : 2010.01.31

Abstract

Based on the differential electrode equilibria approach, potentiometric YSZ sensors with semiconducting oxide electrodes for CO detection are developed. To improve the selectivity, sensitivity and response-time of the sensor, our strategy includes (a) selection of an oxide with a semiconducting response to CO, (b) addition of other semiconducting materials, (c) addition of a catalyst (Pd), (d) utilization of combined p- and n-type electrodes in one sensor configuration, and (e) optimization of operating temperatures. Excellent sensing performance is obtained by a novel device structure incorporating $La_2CuO_4$ electrodes on one side and $TiO_2$-based electrodes on opposite substrate faces with Pt contacts. The resulting response produces additive effects for the individual $La_2CuO_4$ and $TiO_2$-based electrodes voltages, thereby realizing an even higher CO sensitivity. The device also is highly selective to CO versus NO with minor sensitivity for NO concentration, compared to a notably large CO sensitivity.

Keywords

References

  1. P. T. Moseley, “Solid State Gas Sensors,” Mea. Sci. Technol., 8 223-37 (1997). https://doi.org/10.1088/0957-0233/8/3/003
  2. R. Mukundan and F. Garzon, “Electrochemical Sensors for Energy and Transportation,” Electrochem. Soc. Interface, 13 30-5 (2004).
  3. A.-M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, “Solid-State Gas Sensors: A Review,” J. Electrochem. Soc., 139 3690-704 (1992). https://doi.org/10.1149/1.2069145
  4. A.-M. Azad and E. D. Wachsman, ''Solid State Chemical Sensors for CO,” pp. 455 in Proceedings of the 208th Meeting of the Electrochemical Society, Solid State Ionic Devices II, Edited. E. D. Wachsman, W. Weppner, E. Traversa, M. Liu, P. Vanysek, and N. Yamazoe, The Electrochemical Society, Pennington, NJ, 2001.
  5. N. Li, T. C. Tan, and H. C. Zheng, “High Temperature Carbon Monoxide Potentiometric Sensor,” J. Electrochem. Soc., 140 1068-73 (1993). https://doi.org/10.1149/1.2056199
  6. J. Yoo, S. Chatterjee, F. M. Van Assche, and E. D. Wachsman, “Influence of Adsorption and Catalytic Reaction on Sensing Properties of a Potentiometric $La_2CuO_4/YSZ/Pt$ Sensor,” J. Electrochem. Soc., 154 J190-5 (2007). https://doi.org/10.1149/1.2731305
  7. H. Okamoto, H. Obayashi, and T. Kudo, “Carbon Monoxide Gas Sensor Made of Stabilized Zirconia,” Solid State Ionics, 1 319-26 (1980). https://doi.org/10.1016/0167-2738(80)90012-0
  8. N. Yamazoe and N. Miura, “Gas Sensors Using Solid Electrolytes,” Mater. Res. Soc. Bull., 24 37-43 (1996).
  9. H. Okamoto, H. Obayashi, and T. Kudo, “Carbon Monoxide Gas Sensor Made of Stabilized Zirconia,” Solid State Ionics, 1 319-26 (1980). https://doi.org/10.1016/0167-2738(80)90012-0
  10. N. Miura, G. Y. Lu, and N. Yamazoe, “Progress in Mixed-Potential Type Devices Based on Solid Electrolyte for Sensing Redox Gases,” Solid State Ionics, 136-7 533-42 (2000).
  11. E. D. Bartolomeo, M. L. Grilli, and E. Traversa, “Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes,” J. Electrochem. Soc., 151 H133-9 (2004). https://doi.org/10.1149/1.1695387
  12. N. Yamazoe and N. Miura, “Potentiometric Gas Sensors for Oxidic Gases,” J. Electroceram., 2 243-55 (1998). https://doi.org/10.1023/A:1009974506712
  13. Shimizu, H. Nishi, H. Suzuki, and K. Maeda, “Solid-State NOx Sensor Combined with NASICON and Pb-Ru-Based Pyrochlore-Type Oxide Electrode,” Sens. Actuators B, 65 141-43 (2000). https://doi.org/10.1016/S0925-4005(99)00442-6
  14. R. Mukundan, E. Brosha, D. Brown, and F. Garzon, “A Mixed-Potential Sensor Based on a $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte and Platinum and Gold Electrodes,” J. Electrochem. Soc., 147 1583-88 (2000). https://doi.org/10.1149/1.1393398
  15. E. D. Wachsman and P. Jayaweera, “Selective Detection of $NO_x$ by Differential Electrode Equilibria,” pp. 298 in Proceedings of the 208th Meeting of The Electrochemical Society, Solid State Ionic Devices II – Ceramic Sensors, Edited. E. D. Wachsman, W. Weppner, E. Traversa, M. Liu, P. Vanysek, and N. Yamazoe, The Electrochemical Society, Pennington, NJ, 2001.
  16. E. D. Wachsman and P. Jayaweera, “Solid State Electrochemical Cell for Measuring Components of a Gas Mixture and Related Measurement Method,” Filed May 7, 1996 U. S. Patent No. 08/646,448.
  17. B. M. White, E. Macam, F. M. Van Assche, E. Traversa, and E. D. Wachsman, “A Theoretical Framework for Prediction of Solid State Potentiometric Gas Sensor Behavior,” ECS Trans., 3 179-94 (2006).
  18. M. L. Grilli, E. Di Bartolomeo, and E. Traversa, “Electrochemical NOx Sensors Based on Interfacing Nanosized LaFeO3 Perovskite-Type Oxide and Ionic Conductors,” J. Electrochem. Soc., 148 H98-102 (2001). https://doi.org/10.1149/1.1386921
  19. Elisabetta Di Bartolomeo, Maria Luisa Grilli, Jong Won Yoon, and Enrico Traversa, “Zirconia-Based Electrochemical NOx Sensors with Semiconducting Oxide Electrodes,” J. Am. Ceram. Soc., 87 1883-89 (2004).
  20. F. M. Van Asshe and E. D. Wachsman, “Isotopically Labeled Oxygen Studies of the NOx Exchange Behavior of $La_2CuO_4$ to Determine Potentiometric Sensor Response Mechanism,” Solid State Ionics, 179 2225-33 (2008). https://doi.org/10.1016/j.ssi.2008.08.014
  21. F. M. Van Assche, J. C. Nino, and E. D. Wachsman, “Infrared and X-ray Photoemission Spectroscopy of Adsorbates on $La_2CuO_4$ to Determine Potentiometric $NO_x$ Sensor Response Mechanism,” J. Electrochem. Soc., 155 J198-J204 (2008). https://doi.org/10.1149/1.2912741
  22. B. White, E. Traversa, and E. D. Wachsman, “Investigation of $La_2CuO_4/YSZ/Pt$ Potentiometric NOx Sensors with Electrochemical Impedance Spectroscopy,” J. Electrochem. Soc., 155 J11-6 (2008). https://doi.org/10.1149/1.2799768
  23. K. Fukui and M. Nakane, “CO Gas Sensor Based on $Au-La_2O_3$ Loaded $SnO_2$ Ceramic,” Sensors Actuators B, 25 486-90 (1995). https://doi.org/10.1016/0925-4005(95)85104-6
  24. D. H. Yoon, J. H. Yu, and G. M. Choi, “CO Gas Sensing Properties of ZnO–CuO Composite,” Sensors Actuators B, 46 15-23 (1998). https://doi.org/10.1016/S0925-4005(97)00317-1
  25. L. D. Birkefeld, A.-M. Azad, and S. A. Akbar, “Carbon Monoxide and Hydrogen Detection by Anatase Modification of Titanium Dioxide,” J. Am. Ceram. Soc., 75 2964-68 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04372.x
  26. S. A. Akbar and L. B. Younkman, “Sensing Mechanism of a Carbon Monoxide Sensor Based on Anatase Titania,” J. Electrochem. Soc., 144 1750-3 (1997). https://doi.org/10.1149/1.1837673
  27. J.-Y. Park, S.-J. Song, and E. D. Wachsman, “Highly Sensitive and Selective Miniaturized Potentiometric CO Sensors with Titania-based Sensing Materials,” J. Am. Ceram. Soc., In print.
  28. J.-Y. Park, A.-M. Azad, S.-J. Song, and E. D. Wachsman, “Titania-based Miniature Potentiometric Carbon Monoxide Gas Sensors with High Sensitivity”, J. Am. Ceram. Soc., In print.
  29. B. White, S. Chatterjee, E. Macam, and E. D. Wachsman, “Effect of Electrode Microstructure on the Sensitivity and Response Time of Potentiometric NOx Sensors,” J. Am. Ceram. Soc., 91 2024-31 (2008). https://doi.org/10.1111/j.1551-2916.2008.02384.x
  30. G. Martinelli, M. C. Carotta, E. Traversa, and G. Ghiotti, “Thick-Film Gas Sensors Based on Nano-Sized Semiconducting Oxide Powders,” MRS Bulletin, 30-36 (1999).
  31. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, “Grain Size Effects on Gas Sensitivity of Porous $SnO_2$-Based Elements,” Sensors Actuators B, 3 147-55 (1991). https://doi.org/10.1016/0925-4005(91)80207-Z