DOI QR코드

DOI QR Code

Photocatalytic Degradation of Methylene Blue by ACF/TiO2 and ACF/ZnO Composites under UV Light

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2010.01.27

Abstract

Methylene blue (MB) was degraded by $TiO_2$ and ZnO deposited on an activated carbon fiber (ACF) surface under UV light. The ACF/$TiO_2$ and ACF/ZnO composites were characterized by BET, SEM, XRD, and EDX. The BET surface area was related to the adsorption capacity for composites. The SEM results showed that titanium dioxide and zinc oxide are distributed on the ACF surface. The XRD results showed that the ACF/$TiO_2$ and ACF/ZnO composites contained a unique anatase structure for $TiO_2$ and a typical hexagonal phase for ZnO respectively. These EDX spectra showed the presence of peaks of Ti element on ACF/$TiO_2$ composite and peaks of Zn element on the ACF/ZnO composite. The blank experiments for either illuminating the MB solution or the suspension containing ACF/$TiO_2$ or ACF/ZnO in the dark showed that both illumination and the catalyst were necessary for the mineralization of organic dye. Additionally, the ACF/$TiO_2$ composites proved to be efficient photocatalysts due to degradation of MB at higher reaction rates. The addition of an oxidant $([NH_4]_2S_2O_8)$ led to an increase of the degradation rate of MB for ACF/$TiO_2$ and ACF/ZnO composites.

Keywords

References

  1. R. W. Matthews, Water Res., 25, 1169 (1991). https://doi.org/10.1016/0043-1354(91)90054-T
  2. R. J. Davis, J. L. Gainer, G. O. Neal and I. Wenwu, Water Environ. Res., 66, 50 (1994). https://doi.org/10.2175/WER.66.1.8
  3. C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A. K. Chattopadhyay and P. V. Kamat, J. Phys. Chem., 100, 8436 (1996). https://doi.org/10.1021/jp953556v
  4. A. Fujishima, X. T. Zhang and D. A. Tryk, Int. J. Hydrogen Energ., 32, 2664 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.009
  5. O. S. Mohamed, S. A. Ahmed, M. F. Mostafa and A. A. Abdel-Wahab, J. Photochem. Photobiol. A, 200, 209 (2008). https://doi.org/10.1016/j.jphotochem.2008.07.015
  6. A. O. Ibhadon, G. M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, Appl. Catal. B: Environ., 84, 351 (2008). https://doi.org/10.1016/j.apcatb.2008.04.019
  7. I. Konstantinou and T. Albanis, Appl. Catal. B Environ., 42, 319 (2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  8. K. Kabra, R. Chaudhary and R. Sawhney, Ind. Eng. Chem. Res., 43, 7683 (2004). https://doi.org/10.1021/ie0498551
  9. N. Meng, K. H. Michael, Y. C. Leung, L. Dennis and K. Sumathy, Renew. Sust. Energ. Rev., 11, 401 (2007). https://doi.org/10.1016/j.rser.2005.01.009
  10. U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol. C: Photochem. Rev., 9, 1 (2008). https://doi.org/10.1016/j.jphotochemrev.2007.12.003
  11. V. A. Coleman and C. Jagadish, Thin Films and Nanostructures., 1 (2006)
  12. S. Logothetidis, A. Laskarakis, A. Kassavetis, S. Lousinian, C. Gravalidis and G. Kiriakidis, Thin Solid Films., 516, 1345 (2008) https://doi.org/10.1016/j.tsf.2007.03.171
  13. C. Hariharan, Appl. Catal. A: Gen., 304 55 (2006) https://doi.org/10.1016/j.apcata.2006.02.020
  14. S. Fukahori, H. Ichiura, T. Kitaoka and H. Tanaka, Appl. Catal. B Environ., 46, 453 (2003). https://doi.org/10.1016/S0926-3373(03)00270-4
  15. N. Takeda, N. Iwata, T. Torimoto and H. Yoneyama, J. Catal., 177, 240 (1998). https://doi.org/10.1006/jcat.1998.2117
  16. A. Music, J. Batista and J. Levec, Appl Catalys A: General., 165, 115 (1997) https://doi.org/10.1016/S0926-860X(97)00195-6
  17. W. C. Oh, M. L. Chen and C. S. Lim, J. Ceram. Proceed. Res., 8, 119 (2007).
  18. S. X. Liu , X. Y. Chen and X. Chen, J. Hazard.Mater., 143, 257 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.026
  19. W. C. Oh, J. S. Bae, M. L. Chen and Y. S. Ko, Analy. Sci. Technol., 19, 376 (2006).
  20. W. C. Oh, J. S. Bae and M. L. Chen, Bull. Kor Chem. Soc., 27, 1423 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1423
  21. P. Le Cloirec, C. Brasquet and E. Subrenat, Energy Fuels, 11, 331 (1997). https://doi.org/10.1021/ef9601430
  22. Y. G. Go, F. J. Zhang, M. L. Chen and W. C. Oh, Kor. J. Mater. Res., 19(3), 142 (2009). https://doi.org/10.3740/MRSK.2009.19.3.142
  23. W. C. Oh and M. L. Chen, J. Ceram. Process. Res., 9(2), 100 (2008).
  24. T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda and M. Inagaki, Appl. Surf. Sci., 196, 429 (2002). https://doi.org/10.1016/S0169-4332(02)00081-8
  25. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda and M. Inagaki, J. Mater. Chem., 12, 1391 (2002). https://doi.org/10.1039/b201942f
  26. M. L. Chen, J. S. Bae and W. C. Oh, Anal. Sci. Technol., 19(6), 460 (2006).
  27. D. C. Hurum, K. A. Gray, T. Rajh, and M. C. Thurnauer, J. Phys. Chem. B., 109, 977 (2005). https://doi.org/10.1021/jp045395d
  28. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energ. Mater. Sol. Cell., 77, 65 (2003). https://doi.org/10.1016/S0927-0248(02)00255-6
  29. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee and W. B. Ko, J. Ind. Eng. Chem., 15, 190 (2009). https://doi.org/10.1016/j.jiec.2008.09.019
  30. S. Malato, J. Blanco, C. Richter, B. Braun and M.I. Maldonado, Appl. Catal. B: Environ., 17, 347 (1998). https://doi.org/10.1016/S0926-3373(98)00019-8
  31. S. Irmak, E. Kusvuran and O. Erbatur, Appl. Catal. B Environ., 54, 85 (2004). https://doi.org/10.1016/j.apcatb.2004.06.003
  32. B. Tryba, A W. Morawski, M. Inagaki and M. Toyoda. Appl. Catal. B Environ., 63, 215 (2006). https://doi.org/10.1016/j.apcatb.2005.09.011