DOI QR코드

DOI QR Code

Contact Analysis of a Spherical Particle Between Elastomeric Seal and Steel Surface

시일과 스틸면 사이에 구형입자가 있는 접촉문제의 해석

  • Park, Tae-Jo (School of Mechanical and Aerospace Engineering.ERI, Gyeongsang Nat'l Univ.) ;
  • Jo, Hyeon-Dong (School of Mechanical and Aerospace Engineering, Gyeongsang Nat'l Univ.)
  • 박태조 (경상대학교 기계항공공학부.공학연구원) ;
  • 조현동 (경상대학교 기계항공공학부)
  • Published : 2010.02.01

Abstract

Elastomeric seals are widely used in dynamic seal applications, and it is well known that the sealing surfaces can be gradually worn out. Abrasive wear is known to be the most dominant factor; however, little research has been carried out on this problem until now. In this study, a new contact problem related to elastomeric seals-a small spherical particle and steel surface-was modeled and analyzed using MARC. Variations of von-Mises and residual stress distributions as well as deformed seal and steel surface shapes with seal materials and interferences are presented. The stress distribution and surface deformation are highly affected by the elastic properties of seal. For PTFE, the maximum von-Mises stress exceeds the yield strength, and plastic deformation occurs on the steel surface. Therefore, the sealing surface can also be worn down by sub-surface fatigue due to intervening hard particles in the sealing surfaces together with the well-known abrasion.

본 논문에서는 시일 설치면에서의 마멸발생기구를 정확하게 조사하기 위한 연구의 일환으로 미세입자가 시일과 스틸면 사이에 존재하는 경우의 접촉문제를 비선형문제해석 프로그램인 MARC를 사용하여 해석하였다. 이 결과, 시일의 재질은 스틸면에서의 응력분포와 변형형상에 아주 큰 영향을 미쳤다. 특히, PTFE와 같이 탄성계수가 높은 시일인 경우에 스틸 표면은 국부적으로 항복상태에 도달할 뿐만 아니라 시일을 제거한 후에도 영구변형과 함께 상당한 크기의 압축/인장 잔류응력이 존재하였다. 따라서, 시일과 스틸면 사이에 경질입자가 존재할 경우에는 연삭마멸과 함께 피로마멸이 발생할 수 있음을 확인하였으며, 다양한 설계변수에 대한 추가연구가 요구된다.

Keywords

References

  1. Bhushan, B., 1998, Principles and Applications of Tribology, Marcel Dekker.
  2. Sun, Y., Bloyce, A. and Bell, T., 1995, "Finite Element Analysis of Plastic Deformation of Various TiN Coating/Substrate Systems under Normal Contact with Rigid Sphere," Thin Solid Films, Vol.271, pp.122-131. https://doi.org/10.1016/0040-6090(95)06942-9
  3. Kang, Y. S., Sadeghi, F. and Hoeprich, M. R., 2004, "A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts," Trans. ASME, J. of Tribology, Vol.126, pp.71-80. https://doi.org/10.1115/1.1609483
  4. Coveney, V. A. and Menger, C., 2000, "Behav-iour of Model Abrasive Particles between a Sliding Elastomer Surface and a Steel Counter-face," Wear, Vol.240, pp.72-79. https://doi.org/10.1016/S0043-1648(00)00338-0
  5. McColl, I. R., Ding, J., and Leen, S. B., 2004, "Finite Element Simulation and Experimental Validation of Fretting Wear," Wear, Vol.256, pp.1114-1127. https://doi.org/10.1016/j.wear.2003.07.001
  6. Park, T. J. and Cho, H. D., 2008, "Contact Stress Analysis of a Spherical Wear Particle between Seal and Steel Surface," Friction, Wear and Wear Protection, ed. by Fisher A. and Bobzin, K., pp.744-749.
  7. Park, T. J., Yoo, J. C. and Jo, H. D., 2008, "Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface," J. of KSTLE, Vol.24, No.6, pp.297-301.
  8. MSC. MARC/MENTAT, 2007, "2007r1 User's Guide," Vol.A-E.

Cited by

  1. Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface vol.28, pp.6, 2012, https://doi.org/10.9725/kstle-2012.28.6.283