DOI QR코드

DOI QR Code

Interface Engineering in Quasi-Magnetic Tunnel Junctions with an Organic Barrier

  • Received : 2010.10.22
  • Accepted : 2010.12.16
  • Published : 2010.12.31

Abstract

Spin polarized tunneling through a hybrid tunnel barrier of a Spin filter (SF) based on a EuO ferro-magnetic semiconductor and an organic semiconductor (OSC) (rubrene in this case) was investigated. For quasi-magnetic tunnel junction (MTJ) structures, such as Co/rubrene/EuO/Al, we observed a strong spin filtering effect of the EuO layer exhibiting I-V curves with high spin polarization (P) of up to 99% measured at 4 K. However, a magnetoresistance (MR) value of 9% was obtained at 4.2 K. The low MR compared to the high P could be attributed to spin scattering caused by structural defects at the interface between the EuO and rubrene, due to nonstoichiometry in the EuO.

Keywords

References

  1. W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007). https://doi.org/10.1088/0022-3727/40/12/R01
  2. C. B. Harris et al. Phys. Rev. Lett. 30, 1019 (1973). https://doi.org/10.1103/PhysRevLett.30.1019
  3. V. I. Krinichnyi et al. Phys. Rev. B 55, 16233 (1997). https://doi.org/10.1103/PhysRevB.55.16233
  4. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature (London) 427, 821 (2004). https://doi.org/10.1038/nature02325
  5. T. Santos et al. Phys. Rev. Lett. 98, 016601 (2007). https://doi.org/10.1103/PhysRevLett.98.016601
  6. C. Barraud et al. Nature Phys. 6, 615 (2010). https://doi.org/10.1038/nphys1688
  7. M. Yunus, P. P. Ruden, and D. L. Smith, J. Appl. Phys. 103, 103714 (2008). https://doi.org/10.1063/1.2917215
  8. J. S. Moodera, X. Hao, G. A. Gibson, and R. Meservey, Phys. Rev. Lett. 61, 637 (1988). https://doi.org/10.1103/PhysRevLett.61.637
  9. X. Hao, J. S. Moodera, and R. Meservey, Phys. Rev. B 42, 8235 (1990). https://doi.org/10.1103/PhysRevB.42.8235
  10. J. S. Moodera, R. Meservey, and X. Hao, Phys. Rev. Lett. 70, 853 (1993). https://doi.org/10.1103/PhysRevLett.70.853
  11. T. S. Santos and J. S. Moodera, Phys. Rev. B 69, 241203(R) (2004). https://doi.org/10.1103/PhysRevB.69.241203
  12. J. S. Moodera, T. S. Santos, and T. Nagahama, J. Phys.: Condens. Matter 19, 165202 (2007). https://doi.org/10.1088/0953-8984/19/16/165202
  13. D. Käfer and G. Witte, Phys. Chem. Chem. Phys. 7, 2850 (2005). https://doi.org/10.1039/b507620j
  14. D. D. Käfer, L. Ruppel, G. Witte, and Ch. Woll, Phys. Rev. Lett. 95, 166602 (2005). https://doi.org/10.1103/PhysRevLett.95.166602
  15. V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003). https://doi.org/10.1063/1.1560869
  16. A. F. Stassen, R. W. I. de Boer, N. N. Iosad, and A. F. Morpurgo, Appl. Phys. Lett. 85, 3899 (2004). https://doi.org/10.1063/1.1812368
  17. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004). https://doi.org/10.1126/science.1094196
  18. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970). https://doi.org/10.1063/1.1659141
  19. J. Appelbaum, Phys. Rev. Lett. 17, 91 (1966). https://doi.org/10.1103/PhysRevLett.17.91
  20. J. S. Moodera, L. R. Kindera, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). https://doi.org/10.1103/PhysRevLett.74.3273
  21. M. Julliere, Phys. Lett. 54A, 225 (1975).
  22. J. S. Moodera, J. Nowak, and R. J. M van de Veerdonk, Phys. Rev. Lett. 80, 2941 (1998). https://doi.org/10.1103/PhysRevLett.80.2941
  23. J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999) https://doi.org/10.1016/S0304-8853(99)00515-6
  24. T. Nagahama, and J. S. Moodera, J. Magnetics 11, 151 (2006). https://doi.org/10.4283/JMAG.2006.11.4.151