DOI QR코드

DOI QR Code

Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens

배발생 캘러스를 이용한 아그로박테리움 매개형질전환 장미 식물체 획득

  • Lee, Su-Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Jung-Lim (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won-Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Seung-Tae (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Eun-Kyung (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이수영 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이정림 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 김원희 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 김성태 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이은경 (농촌진흥청 국립원예특작과학원 화훼과)
  • Received : 2010.10.12
  • Accepted : 2010.10.27
  • Published : 2010.12.31

Abstract

The process to acquire intron-GUS gene-expressed transformants from somatic embryos (including embryogenic calli) of Rosa hybrida cv. 'Sweet Yellow' using Agrobacterium-meditated transformation method was reported in this study. Somatic embryos including embryogenic calluses were infected with Agrobacterium tumefaciens AGL1 strain (O.D = 0.7~1.6) including intron-GUS gene for 30 min, and were co-cultured for 3 days. After co-cultivation, they were cultured on embryo germination medium (EGM) supplemented with $250\;mg{\cdot}L^{-1}$ cefotaxim at $4^{\circ}C$ for 7 days. Then, transient GUS gene expression was observed. Shoots were regenerated from the shoot primodia induced from the intron-GUS gene-transferred either somatic embryos or embryogenic calli cultured on EGM supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$. Before induction of rooting from shoots cultured on shoot growing medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$, the shoots were cultured on multi-shoot induction medium supplemented with both cefotaxim $250\;mg{\cdot}L^{-1}$ and ppt $2\;mg{\cdot}L^{-1}$ to induce multi-shoots. When expression of the gene from a part of the multi-shoots was identified by GUS transient assay, the putative transgenic multishoots were transferred to rooting medium supplemented with cefotaxim $250\;mg{\cdot}L^{-1}$. After the formation of healthy roots, transgenic plantlets were transferred to the greenhouse after acclimatization. The expression rate of the intron-GUS gene in the multi-shoots was 100%.

아그로박테리움 매개에 의한 형질전환 기술을 이용하여 국내에서 육성된 품종 'Sweet Yellow'로부터 유도된 체세포배 (배발생캘러스 포함)로 intron-GUS유전자가 전이된 식물체를 획득하기까지의 과정이 제시되었다. Intron-GUS 유전자를 포함하고 있는 Agrobacterium tumefaciens AgL1(O.D=0.7~1.6)에 30분 감염시켜 3일간 공동배양 한 후 $4^{\circ}C$에서 7일간의 저온처리를 거친 후 cefotaxim $250\;mg{\cdot}L^{-1}$ 첨가 체세포배발아 배지에 배양된 체세포배 (배발생캘러스 포함)들 대부분으로 유전자가 전이된 것을 GUS transient assay에 의해 확인하였다. Intron-GUS유전자가 전이된 체세포배 (배발생캘러스 포함)로부터 신초원기를 유도한 후 신초를 재분화시켰고, 재분화된 신초로부터 다신초가 형성되도록 하였다. 다신초로부터 신초의 일부를 떼어 GUS transient assay 분석을 실시하여 intron-GUS 유전자의 발현을 확인한 후 발근시켜 순화 후 온실로 옮겼다. GUS transient assay에 의해 확인된 유전자 발현율은 100%였다.

Keywords

References

  1. Castillon J, Kamo K (2002) Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. hortscience 37:973-977
  2. Derk FHM, van Dijk AJ, Hanisch ten Cate ChH, Florack DEA, Dubois LAM, de Vries DP (1995) Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity, somatic embryogenesis and Agrobacterium-mediated transformation. Acta Hort. 405:205-209
  3. Firozabody E, Moy Y, Courtneygutterson, N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissues. Bio/Technology 12: 609-613 https://doi.org/10.1038/nbt0694-609
  4. Han JS, Kim CK, Park SH, Hirschi KD, Mok IG (2005) Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.) Plant Cell Rep. 23:692-698 https://doi.org/10.1007/s00299-004-0874-z
  5. Jafferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in high plants. EMBO J 6:39.1-39.7
  6. Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH (2004) Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell. Tissue and Organ Culture 78:107-111 https://doi.org/10.1023/B:TICU.0000022529.16697.90
  7. Lee SY, Jung JH, Kim JH, Han BH (2008) In vitro multiple shoot proliferation and plant regeneration in rose. J. Plant Biotechnol. 35:223-228 https://doi.org/10.5010/JPB.2008.35.3.223
  8. Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218: 226-232 https://doi.org/10.1007/s00425-003-1093-5
  9. Li X, Krasnyanski S, Korban SS (2002) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453-459 https://doi.org/10.1016/S0981-9428(02)01394-3
  10. Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in floribunda rose (Roas hybridaL.) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95-105 https://doi.org/10.1016/S0168-9452(96)04479-2
  11. Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998a) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduce development of blackspot disease (Diplocarpon rosae wolf). Mol. Breed 4:187-194 https://doi.org/10.1023/A:1009642707505
  12. Marchant R, Power JB, Davey MR (1998b) Biolistic transformation of rose (Rosa hybrida L.) Ann Bot 81:109-114 https://doi.org/10.1006/anbo.1997.0538
  13. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199-204 https://doi.org/10.1139/b72-026
  14. Souq E, Coutos-Thevnot P, Yean H, Delbard G, Maziere Y, Barbe JP, Boulay et M (1996) Genetic transformation of roses, 2 examples: ome on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta hort 424:381-388
  15. Tanaka Y (2009) Flower colour modification by genetic engineering. 2009 PlantScience Conference: 9
  16. Van der Salm TPM, Bouwer R, van Dijk AJ, Keizer LCP, Hänisch ten Cate ChH, van der Plas LHW, Dons HJM (1998) Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. J Exp Bot 49: 847-852 https://doi.org/10.1093/jexbot/49.322.847
  17. Van der Salm TPM, van der Toorn CJG, Bouwer R, Hänisch ten Cate ChH, Dons HJM (1997) Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol Breed 3:39-47 https://doi.org/10.1023/A:1009617704014

Cited by

  1. Production of somatic embryo and transgenic plants derived from breeding lines of Rosa hybrida L. vol.54, pp.2, 2013, https://doi.org/10.1007/s13580-013-0085-z
  2. New embryogenesis from atypical bodies and plant regeneration from long-term subcultured embryogenic callus in rose vol.41, pp.2, 2014, https://doi.org/10.5010/JPB.2014.41.2.89
  3. Promotion of in vitro shoot proliferation in rose by addition of liquid medium to culture vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.305