INFINITE FINITE RANGE INEQUALITIES

  • 투고 : 2010.01.10
  • 심사 : 2010.03.08
  • 발행 : 2010.03.01

초록

Infinite finite range inequalities relate the norm of a weighted polynomial over ${\mathbb{R}}$ to its norm over a finite interval. In this paper we extend such inequalities to generalized polynomials with the weight $W(x)={\prod}^{m}_{k=1}{\mid}x-x_k{\mid}^{{\gamma}_k}{\cdot}{\exp}(-{\mid}x{\mid}^{\alpha})$.

키워드

참고문헌

  1. T. Erdelyi, Bernstein and Markov type inequalities for generalized non-negative polynomials, Can. J. Math. 43 (1991), 495-505. https://doi.org/10.4153/CJM-1991-030-3
  2. T. Erdelyi, Remez-type inequalities on the size of generalized non-negative polynomials, J. London Math. Soc. 45 (1992), 255-264. https://doi.org/10.1112/jlms/s2-45.2.255
  3. T. Erdelyi, A. Mate, and P. Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), 241-255. https://doi.org/10.1007/BF01238273
  4. T. Erdelyi and P. Nevai, Generalized Jacobi weights, Christoffel functions and zeros of orthogonal polynomials, J. Approx. Theory 69 (1992), 111-132. https://doi.org/10.1016/0021-9045(92)90136-C
  5. H. Joung, Estimates of Christoffel functions for generalized polynomils with exponential weights, Comm. Korean Math. Soc. 14 (1999), No. 1, 121-134.
  6. A.L. Levin and D.S. Lubinsky, Canonical products and the weights exp-$({{\mid}x{\mid}}^\alpha)$ 1, with applications, J. Approx. Theory 49 (1987), 149-169 https://doi.org/10.1016/0021-9045(87)90085-2
  7. D.S. Lubinsky, H.N. Mhaskar, and E.B. Saff, A proof of Freud's conjecture for exponential weights, Constr. Approx. 4 (1988), 65-83 https://doi.org/10.1007/BF02075448
  8. H.N. Mhaskar and E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234. https://doi.org/10.1090/S0002-9947-1984-0748838-0
  9. H.N. Mhaskar and E.B. Saff, Where does the Sup Norm of a Weighted Polynomial Live?, Constr. Approx. 1 (1985), 71-91. https://doi.org/10.1007/BF01890023
  10. P. Nevai, Bernstein's inequality in $L_p$ for 0 < p < 1, J. Approx. Theory. 27(1979), 239-243. https://doi.org/10.1016/0021-9045(79)90105-9
  11. P. Nevai, Geza Freud. Orthogonal Polynomials and Christoffel Functions. A Case Study, J. Approx. Theory. 48(1986), 3-167. https://doi.org/10.1016/0021-9045(86)90016-X
  12. P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213, 1979.