DOI QR코드

DOI QR Code

Comparative Study on the Structural Dependence of Logic Gate Delays in Double-Gate and Triple-Gate FinFETs

  • Kim, Kwan-Young (School of Electrical Engineering, Kookmin University) ;
  • Jang, Jae-Man (School of Electrical Engineering, Kookmin University) ;
  • Yun, Dae-Youn (School of Electrical Engineering, Kookmin University) ;
  • Kim, Dong-Myong (School of Electrical Engineering, Kookmin University) ;
  • Kim, Dae-Hwan (School of Electrical Engineering, Kookmin University)
  • Received : 2010.02.28
  • Published : 2010.06.30

Abstract

A comparative study on the trade-off between the drive current and the total gate capacitance in double-gate (DG) and triple-gate (TG) FinFETs is performed by using 3-D device simulation. As the first result, we found that the optimum ratio of the hardmask oxide thickness ($T_{mask}$) to the sidewall oxide thickness ($T_{ox}$) is $T_{mask}/T_{ox}$=10/2 nm for the minimum logic delay ($\tau$) while $T_{mask}/T_{ox}$=5/1~2 nm for the maximum intrinsic gate capacitance coupling ratio (ICR) with the fixed channel length ($L_G$) and the fin width ($W_{fin}$) under the short channel effect criterion. It means that the TG FinFET is not under the optimal condition in terms of the circuit performance. Second, under optimized $T_{mask}/T_{ox}$, the propagation delay ($\tau$) decreases with the increasing fin height $H_{fin}$. It means that the FinFET-based logic circuit operation goes into the drive current-dominant regime rather than the input gate load capacitance-dominant regime as $H_{fin}$ increases. In the end, the sensitivity of $\Delta\tau/{\Delta}H_{fin}$ or ${{\Delta}I_{ON}}'/{\Delta}H_{fin}$ decreases as $L_G/W_{fin}$ is scaled-down. However, $W_{fin}$ should be carefully designed especially in circuits that are strongly influenced by the self-capacitance or a physical layout because the scaling of $W_{fin}$ is followed by the increase of the self-capacitance portion in the total load capacitance.

Keywords

References

  1. L. Chang, Y.-K. Choi, D. Ha, P. Ranade, S. Xiong, J. Bokor, C. Hu, and T.-J. King, “Extremely scaled silicon nano-CMOS devices,” Proc. IEEE, vol. 91, no. 11, pp. 1860-1873, Nov. 2003. https://doi.org/10.1109/JPROC.2003.818336
  2. H. Kawasaki, V. S. Basker, T. Yamashita, C.-H. Lin, Y. Zhu, J. Faltermeier, S. Schmitz, J. Cummings, S. Kanakasabapathy, H. Adhikari, H. Jagannathan, A. Kumar, K. Maitra, J. Wang, C.-C. Yeh, C. Wang, M. Khater, M. Guillorn, N. Fuller, J. Chang, L. Chang, R. Muralidhar, A. Yagishita, R. Miller, Q. Ouyang, Y. Zhang, V. K. Paruchuri, H. Bu, B. Doris, M. Takayanagi, W. Haensch, D. McHerron, J. O’Neill, and K. Ishimaru, “Challenges and Solutions of FinFET Integration in an SRAM Cell and a Logic Circuit for 22 nm node and beyond,” in Tech. Dig. IEDM, pp. 289-292, Baltimore, Dec. 2009.
  3. M. Tang, F. Pregaldiny, C. Lallement, and J.-M. Sallese, “Explicit Compact Model for Ultranarrow Body FinFETs,” IEEE Trans. Electron Devices, vol. 56, no. 7, pp. 1543-1547, July 2009. https://doi.org/10.1109/TED.2009.2020324
  4. C. R. Manoj, M. Nagpal, D. Varghese, and V. R. Rao, “Device Design and Optimization Considerations for Bulk FinFETs,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 609-615, Feb. 2008. https://doi.org/10.1109/TED.2007.912996
  5. S.-Y. Kim and J. H. Lee, “Hot Carrier-Induced Degradation in Bulk FinFETs,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 556-558, Aug. 2005. https://doi.org/10.1109/LED.2005.852534
  6. W. Wu and M. Chan, “Analysis of geometry-dependent parasitics in multifin double-gate FinFETs,” IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 242-250, Apr. 2007. https://doi.org/10.1109/TED.2007.891252
  7. J.-P. Colinge, FinFETs and Other Multi-Gate Transistors, New York: Springer, 2008.
  8. W. Yang, Z. Yu, and L. Tian, “Scaling Theory for FinFETs Based on 3-D Effects Investigation,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1140-1147, May 2007. https://doi.org/10.1109/TED.2007.893808
  9. H. Zhao, N. Agrawal, R. Javier, S. C. Rustagi, M. Jurczak, Y.-C. Yeo, and G. S. Samudra, “Simulation of Multiple Gate FinFET Device Gate Capacitance and Performance with Gate Length and Pitch Scaling,” in Int. Conf. SISPAD, California, pp. 252-255, Sep. 2006.
  10. Synopsys Sentaurus Structure Editor User Guide, 1995-2007, Synopsys, Mountain View, CA.
  11. Synopsys Tecplot SV User Guide, 1995-2007, Synopsys, Mountain View, CA.
  12. J.-W. Yang and J. G. Fossum, “On the feasibility of nanoscale triple-gate CMOS transistors,” IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1159-1164, Jun. 2005. https://doi.org/10.1109/TED.2005.848109
  13. S. Bangsaruntip, G. M. Cohen, A. Majumdar, Y. Zhang, S. U. Engelmann, N. C. M. Fuller, L. M. Gignac, S. Mittal, J. S. Newbury, M. Guillorn, T. Barwicz, L. Sekaric, M. M. Frank, and J. W. Sleight, “High Performance and Highly Uniform Gate-All-Around Silicon Nanowire MOSFETs with Wire Size Dependent Scaling,” in Tech. Dig. IEDM, pp. 297-300, Baltimore, Dec. 2009.
  14. J.-P. Colinge, Silicon-On-Insulator Technology: Materials to VLSI, 3rd Edition. New York: Springer, 2004.
  15. Synopsys Sentaurus Device User Guide, 1995-2007, Synopsys, Mountain View, CA.

Cited by

  1. High-Speed Low-Power Global On-Chip Interconnect Based on Delayed Symbol Transmission vol.12, pp.2, 2012, https://doi.org/10.5573/JSTS.2012.12.2.168