Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons

과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향

  • Received : 2009.11.25
  • Accepted : 2010.02.01
  • Published : 2010.04.10

Abstract

Activated carbons (ACs) have been prepared from pitch by the combination of a chemical oxidation with different $H_2O_2$ concentrations i.e., 5, 15, and 25 wt% and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The influence of $H_2O_2$ solution on the microporous properties of the pitch and the final activated carbons were invested using XRD, FT-IR, XPS, $N_2$-adsorption, and SEM. XRD indicated that the value of interplanar distance $d_{002}$ increased by chemical oxidation. FT-IR and XPS results showed that the chemical oxidation promoted the formation of surface oxygen functionalities. Also, the specific surface area of the resulting ACs was increased with increasing the concentration of $H_2O_2$ chemical oxidation and showed a maximum value of $2111m^2/g$ at 25 wt% $H_2O_2$ concentration.

본 연구에서 $H_2O_2$에 의한 pitch의 산화처리가 KOH 활성화에 미치는 영향에 관하여 고찰하였다. 산화 처리의 영향을 고려하기 위하여 KOH/pitch 중량비를 3으로 고정하였으며, 1073 K에서 2 h 동안 활성화하였고, $H_2O_2$의 농도를 각각 5, 15, 25 wt%로 달리하여 시편을 제조하였다. 산화처리된 pitch와 이를 전구체로 하여 제조한 활성탄소의 물리화학적 특성은 XRD, FT-IR, XPS, $N_2$ 흡착 및 SEM을 이용하여 분석하였다. XRD 결과로부터 $H_2O_2$ 처리가 (002) 면의 층간거리를 증가시켰으며, FT-IR과 XPS로부터 표면의 carboxyl group 및 hydroxyl group 등의 산소 작용기가 도입되었음을 확인하였다. Pitch로 제조된 활성탄소의 비표면적은 $H_2O_2$ 산화처리에 의해 급격히 상승하였고, $H_2O_2$의 농도를 증가시킬수록 상승폭이 더욱 증가하여 25 wt% $H_2O_2$ 처리시 최대 $2111m^2/g$의 비표면적을 갖는 활성탄소를 제조할 수 있었다.

Keywords

References

  1. A. Feaver and G. Z. Cao, Carbon, 44, 570 (2006) https://doi.org/10.1016/j.carbon.2005.07.043
  2. S. Bashkova, F. S. Baker, X. X. Wu, T. R. Armstrong, and V. Schwartz, Carbon, 45, 1354 (2007) https://doi.org/10.1016/j.carbon.2007.01.005
  3. S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 249, 458 (2002) https://doi.org/10.1006/jcis.2002.8269
  4. E. H. Um and C. T. Lee, J. Korean Ind. Eng. Chem., 20, 396 (2009)
  5. K. J. Kim and H. G. Ahn, J. Korean Ind. Eng. Chem., 19, 445 (2008)
  6. C. Liu, X. Liang, X. Liu, Q. Wang, N. Teng, and L. Zhan, Appl. Surf. Sci., 254, 2659 (2008) https://doi.org/10.1016/j.apsusc.2007.10.026
  7. S. J. Park and W. Y. Jung, J. Colloid Interface Sci., 250, 93 (2002) https://doi.org/10.1006/jcis.2002.8309
  8. P. Chingombe, B. Saha, and R. J. Wakeman, Carbon, 43, 3132 (2005) https://doi.org/10.1016/j.carbon.2005.06.021
  9. S. J. Park and K. D. Kim, Carbon, 39, 1741 (2001) https://doi.org/10.1016/S0008-6223(00)00305-5
  10. S. B. Lee and I. K. Hong, J. Korean Ind. Eng. Chem., 19, 439 (2008)
  11. T. Yang and A. C. Lua, Micropor. Mesopor. Mater., 63, 113 (2003) https://doi.org/10.1016/S1387-1811(03)00456-6
  12. V. Ferro, V. Torne-Fernandez, and A. Celzard, Micropor. Mesopor. Mater., 101, 419 (2007) https://doi.org/10.1016/j.micromeso.2006.12.004
  13. H. R. Hwang, W. J. Choi, T. J. Kim, J. S. Kim, and K. J. Oh, J. Anal. Appl. Pyrolysis, 83, 220 (2008) https://doi.org/10.1016/j.jaap.2008.09.011
  14. E. Vilaplana-Ortego, M. A. Lillo-Rodenas, J. Alcaniz-Monge, D. Carzorla-Amoros, and A. Linares-Solano, Carbon, 47, 2112 (2009) https://doi.org/10.1016/j.carbon.2009.02.027
  15. X. Cheng, Q. Zha, X. Li, and X. Yang, Fuel Process. Technol., 89, 1436 (2008) https://doi.org/10.1016/j.fuproc.2008.07.003
  16. W. Xing and Z. F. Yan, New Carbon Mater., 17, 25 (2002)
  17. C. Y. Guo and C. Y. Wang, Micropor. Mesopor. Mater., 102, 337 (2007) https://doi.org/10.1016/j.micromeso.2006.11.022
  18. J. Ganan-Gomez, A. Macias-Garcia, M. A. Diaz-Diez, C. Gonzalez-Garcia, and E. Sabio-Rey, Appl. Surface Sci., 252, 5976 (2006) https://doi.org/10.1016/j.apsusc.2005.11.011
  19. I. J. Kim, S. H. Yang, M. J. Jeon, S. I. Moon, and H. S. Kim, J. Korea Ind. Eng. Chem., 19, 407 (2008)
  20. M. A. Short and P. L. Walker, Carbon, 1, 3 (1963) https://doi.org/10.1016/0008-6223(63)90003-4
  21. J. Starck, P. Burg, S. Muller, J. Bimer, G. Furdin, and P. Fioux, Carbon, 44, 2457 (2006)
  22. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938) https://doi.org/10.1021/ja01269a023
  23. S. J. Park, S. Y. Jin, and J. Kawasaki, J. Korean Ind. Eng. Chem., 14, 1111 (2003)
  24. B. K. Chan, K. M. Thomas, and H. Marsh, Carbon, 31, 1071 (1993) https://doi.org/10.1016/0008-6223(93)90058-I