DOI QR코드

DOI QR Code

Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase

  • Mondal, Rajkrishna (Department of Biochemistry, Bose Institute) ;
  • Ganguly, Tridib (School of Life Sciences, IISER) ;
  • Chanda, Palas K. (Department of Biochemistry, Bose Institute) ;
  • Bandhu, Amitava (Department of Biochemistry, Bose Institute) ;
  • Jana, Biswanath (Department of Biochemistry, Bose Institute) ;
  • Sau, Keya (School of Biotechnology and Life Sciences, Haldia Institute of Technology) ;
  • Lee, Chia-Y. (Department of Microbiology and Immunology, University of Arkansas for Medical Sciences) ;
  • Sau, Subrata (Department of Biochemistry, Bose Institute)
  • Published : 2010.03.31

Abstract

The primary sigma factor ($\sigma^{A}$) of Staphylococcus aureus, a potential drug target, was little investigated at the structural level. Using an N-terminal histidine-tagged $\sigma^{A}$ (His-$\sigma^{A}$), here we have demonstrated that it exits as a monomer in solution, possesses multiple domains, harbors primarily $\alpha$-helix and efficiently binds to a S. aureus promoter DNA in the presence of core RNA polymerase. While both N- and C-terminal ends of His-$\sigma^{A}$ are flexible in nature, two Trp residues in its DNA binding region are buried. Upon increasing the incubation temperature from 25$^{\circ}$ to 40$^{\circ}C$, $\sim$60% of the input His-$\sigma^{A}$ was cleaved by thermolysin. Aggregation of His-$\sigma^{A}$ was also initiated rapidly at 45$^{\circ}C$. From the equilibrium unfolding experiment, the Gibbs free energy of stabilization of His-$\sigma^{A}$ was estimated to be +0.70 kcal $mol^{-1}$. The data together suggest that primary sigma factor of S. aureus is an unstable protein. Core RNA polymerase however stabilized $\sigma^{A}$ appreciably.

Keywords

References

  1. Paget, M. S. and Helmann, J. D. (2003) The sigma70 family of sigma factors. Genome Biol. 4, 203 https://doi.org/10.1186/gb-2003-4-1-203
  2. Borukhov, S. and Nudler, E. (2003) RNA polymerase holoenzyme: structure, function and biological implications. Curr. Opin. Microbiol. 6, 93-100 https://doi.org/10.1016/S1369-5274(03)00036-5
  3. Wen, Y. D., Liao, C. T., Liou, K. M., Wang, W. H., Huang, W. C. and Chang, B. Y. (2000) Structural and functional properties of a Bacillus subtilis temperature- sensitive sigma(A) factor. Proteins 40, 613-622 https://doi.org/10.1002/1097-0134(20000901)40:4<613::AID-PROT60>3.0.CO;2-K
  4. Severinova, E., Severinov, K., Fenyo, D., Marr, M., Brody, E. N., Roberts, J. W., Chait, B. T. and Darst, S. A. (1996) Domain organization of the Escherichia coli RNA poly merase sigma 70 subunit. J. Mol. Biol. 263, 637-647 https://doi.org/10.1006/jmbi.1996.0604
  5. Chopra , I. (2007) Bacterial RNA polymerase: a promising target for the discovery of new antimicrobial agents. Curr. Opin. Investig. Drugs 8, 600-607
  6. Sau, S., Chattoraj, P., Ganguly, T., Chanda, P. K. and Mandal, N. C. (2008) Inactivation of indispensable bacterial proteins by early proteins of bacteriophages: implication in antibacterial drug discovery. Curr. Protein Pept. Sci. 9, 284-290 https://doi.org/10.2174/138920308784533970
  7. Novick, R. P (2006) Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation, in Grampositive Pathogens, 2nd ed. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A. and Rood, J. I. (eds.), pp. 496-516, ASM Press, Washington DC, USA
  8. Somerville, G. A. and Proctor, R. A. (2009) At the Crossroads of Bacterial Metabolism and Virulence Factor Synthesis in Staphylococci. Microbiol. Mol. Biol. Rev. 73, 233-248 https://doi.org/10.1128/MMBR.00005-09
  9. Draghi, D. C., Sheehan, D. F., Hogan, P. and Sahm, D. F. (2006) Current antimicrobial resistance profiles among methicillin resistant Staphylococcus aureus encountered in the outpatient setting. Diagn. Microbiol. Infect. Dis. 55, 129-133 https://doi.org/10.1016/j.diagmicrobio.2006.01.003
  10. Bergendahl, V., Heyduk, T. and Burgess, R. R. (2003) Luminescence Resonance Energy Transfer-Based High-Throughput Screening Assay for Inhibitors of Essential Protein-Protein Interactions in Bacterial RNA Polymerase. Appl. Environ. Microbiol. 69, 1492-1498 https://doi.org/10.1128/AEM.69.3.1492-1498.2003
  11. Deora, R. and Misra, T. K. (1995) Purification and characterization of DNA dependent RNA polymerase from Staphylococcus aureus. Biochem. Biophys. Res. Commun. 208, 610-616 https://doi.org/10.1006/bbrc.1995.1382
  12. Deora, R. and Misra, T. K. (1996) Characterization of the primary sigma factor of Staphylococcus aureus. J. Biol. Chem. 271, 21828-21834 https://doi.org/10.1074/jbc.271.36.21828
  13. Chanda, P. K., Ganguly, T., Das, M., Lee, C. Y., Luong, T. T. and Sau, S.(2007) Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter - lacZ transcriptional fusion. J. Biochem. Mol. Biol. 40, 936-943 https://doi.org/10.5483/BMBRep.2007.40.6.936
  14. Tyson, P. A. and Steinberg, M. (1987) Accessibility of tryptophan residues in Na, K-ATPase. J. Biol. Chem. 262, 4644-4648
  15. Bohm, G., Muhr, R. and Jaenicke, R. (1992) Quantitative analysis of protein far UVcircular dichroism spectra by neural networks. Protein Eng. 5, 191-195 https://doi.org/10.1093/protein/5.3.191
  16. Greene, R. F. Jr. and Pace, C. N. (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta lactoglobulin. J. Biol. Chem. 249, 5388-5393
  17. Ganguly, T., Bandhu, A., Chattoraj, P., Chanda, P. K., Das, M., Mandal, N. C. and Sau, S. (2007) Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol. J. 4, 64 https://doi.org/10.1186/1743-422X-4-64
  18. Vassylyeva, M. N., Lee, J., Sekine, S. I., Laptenko, O., Kuramitsu, S., Shibata, T., Inoue, Y., Borukhov, S., Vassylyev, D. G. and Yokoyama, S. (2002) Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus. Acta Crystallogr. D. Biol. Crystallogr. 58, 1497-1500 https://doi.org/10.1107/S0907444902011770
  19. Chang, B. Y. and Doi, R. H. (1993) Conformational properties of Bacillus subtilis RNA polymerase sigma A factor during transcription initiation. Biochem. J. 294, 43-47 https://doi.org/10.1042/bj2940043
  20. Nagai, H. and Shimamoto, N. (1997). Regions of the Escherichia coli primary sigma factor sigma70 that are involved in interaction with RNA polymerase core enzyme. Genes Cells 2, 725-734 https://doi.org/10.1046/j.1365-2443.1997.1600357.x
  21. Ganguly, T., Das, M., Bandhu, A., Chanda, P. K., Jana, B., Mondal, R. and Sau, S. (2009) Physicochemical properties and distinct DNA binding capacity of the repressor of temperate Staphylococcus aureus phage phi11. FEBS J. 276, 1975-1985 https://doi.org/10.1111/j.1742-4658.2009.06924.x
  22. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA
  23. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1998) Current Protocols in Molecular Biology. John Wiley & Sons, Inc., USA
  24. Das, M., Ganguly, T., Bandhu, A., Mondal, R., Chanda, P. K., Jana, B. and Sau, S. (2009) Moderately thermostable phage Phi11 Cro repressor has novel DNA-binding capacity and physicochemical properties. BMB Rep. 42, 160-165 https://doi.org/10.5483/BMBRep.2009.42.3.160
  25. Wessel, D. and Fugge, U. I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry 138, 141-143 https://doi.org/10.1016/0003-2697(84)90782-6
  26. Das, M., Ganguly, T., Chattoraj, P., Chanda, P. K., Bandhu, A., Lee, C. Y. and Sau, S. (2007) Overexpression, purification and characterization of repressor of temperate S. aureus phage $\phi11$. J. Biochem. Mol. Biol. 40, 740-748 https://doi.org/10.5483/BMBRep.2007.40.5.740

Cited by

  1. Insights into the regulation of small RNA expression: SarA represses the expression of two sRNAs inStaphylococcus aureus 2016, https://doi.org/10.1093/nar/gkw777
  2. AFM study of Escherichia coli RNA polymerase σ70 subunit aggregation vol.8, pp.1, 2012, https://doi.org/10.1016/j.nano.2011.05.014