DOI QR코드

DOI QR Code

Transduced PEP-1-AMPK inhibits the LPS-induced expression of COX-2 and iNOS in Raw264.7 cells

  • Shin, Min-Jea (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Lee, Yeom-Pyo (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • An, Jae-Jin (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Jang, Sang-Ho (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Cho, Sung-Min (Department of Neurosurgery, Hallym University Medical Center) ;
  • Sheen, Seung-Hoon (Department of Neurosurgery, Hallym University Medical Center) ;
  • Lee, Hae-Ran (Department of Pediatrics, Hallym University Medical Center) ;
  • Kweon, Hae-Yong (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center) ;
  • Cho, Yong-Jun (Department of Neurosurgery, Hallym University Medical Center) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University Medical Center)
  • Published : 2010.01.31

Abstract

AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that plays a central role in cellular metabolic stress. Modulation of nitric oxide (NO) and cyclooxygenase-2 (COX-2) is considered a promising approach for the treatment of inflammation and neuronal diseases. In this study, the AMPK gene was fused in-frame with PEP-1 peptide in a bacterial expression vector to produce a PEP-1-AMPK fusion protein. Expressed and purified PEP-1-AMPK fusion proteins were transduced efficiently into macrophage Raw 264.7 cells in a time- and dose-dependent manner. Furthermore, transduced PEP-1-AMPK fusion protein markedly inhibited LPS-induced iNOS and COX-2 expression. These results suggest that the PEP-1-AMPK fusion protein can be used for the protein therapy of COX-2 and NO-related disorders such as inflammation and neuronal diseases.

Keywords

References

  1. Yu, H. H., Wu, F. L., Lin, S. E. and Shen, L. J. (2008)Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J. Neurosci. Res. 86, 2963-2972 https://doi.org/10.1002/jnr.21740
  2. Colton, C. A., Vitek, M. P., Wink, D. A., Xu, Q., Cantillana, V., Previti, M. L., van Nostrand, W. E., Weinberg, J. B. and Dawson, H. (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A 103, 12867-12872 https://doi.org/10.1073/pnas.0601075103
  3. Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H. and Dawson, T. M. (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 16, 2479-2487
  4. Good, P. F., Hsu, A., Werner, P., Perl, D. P. and Olanow, C. W. (1998) Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57, 338-342 https://doi.org/10.1097/00005072-199804000-00006
  5. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T.,Fishman M. C. and Moskowitz, M. A. (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883-1885 https://doi.org/10.1126/science.7522345
  6. Iadecola, C., Zhang, F., Casey, R., Nagayama, M. and Ross, M. E. (1997) Delayed reduction of ischemic brain njury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157-9164
  7. Martin, L. J., Liu, Z., Chen, K., Price, A. C., Pan, Y.,Swaby, J. A. and Golden, W. C. (2007) Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanism of mitochondriopathy and cell death. J. Comp. Neurol. 500, 20-46 https://doi.org/10.1002/cne.21160
  8. Amin, A. R., Attur, M. and Abramson, S. B. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11, 202-209 https://doi.org/10.1097/00002281-199905000-00009
  9. Tilley, S. L., Coffman, T. M. and Koller, B. A. (2001)Mixed message: gene: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. 107, 191-195 https://doi.org/10.1172/JCI9862
  10. Smith, W. L. and Dewit, D. L. (1990) Prostaglandin endoperoxide H synthase-1 and -2. Adv. Immunol. 62, 167-215
  11. Carey, M. A., Germolec, D. R., Langenbach, R. and Zeldin, D. C. (2003) Cyclooxygenase enzymes in allergic inflammation and asthma. Prostaglandins Leukot. Essent. Fatty Acids 69, 157-162 https://doi.org/10.1016/S0952-3278(03)00076-0
  12. Vancheri, C., Mastruzzo, C., Sortino, M. A. and Crimi, N. (2004) The lung as a privileged site for the beneficial actions of PEG2. Trends Immunol. 25, 40-46 https://doi.org/10.1016/j.it.2003.11.001
  13. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U. and Di Padova, F. (1994) Bacterial endotoxin: molecular relationships and structure to activity and function. FASEB J. 8, 217-225 https://doi.org/10.1096/fasebj.8.2.8119492
  14. Adams, D. O. and Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318 https://doi.org/10.1146/annurev.iy.02.040184.001435
  15. Morrison, D. C. and Ryan, J. L. (1987) Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432 https://doi.org/10.1146/annurev.me.38.020187.002221
  16. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y.S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemoprventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481, 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  17. Winder, W. W. (2001) Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J. Appl. Physiol. 91, 1017-1028 https://doi.org/10.1152/jappl.2001.91.3.1017
  18. Neumann, D., Woods, A., Carling, D., Wallimann, T. and Schlattner, U. (2003) Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli. Protein Expr.Purif. 30, 230-237 https://doi.org/10.1016/S1046-5928(03)00126-8
  19. Sag, D., Carling, D., Stout, R. D. and Suttles, J. (2008)Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633-8641 https://doi.org/10.4049/jimmunol.181.12.8633
  20. Carling, D. (2004) The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem. Sci. 29, 18-24 https://doi.org/10.1016/j.tibs.2003.11.005
  21. Hardie, D. G. (2003) The AMP-activated protein kinase cascade:the key sensor of cellular energy status. Endocrinol. 144, 5179-5183 https://doi.org/10.1210/en.2003-0982
  22. Hardie, D. G. and Hawley, S. A. (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112-1119 https://doi.org/10.1002/bies.10009
  23. Winder, W. W. and Hardie, D. G. (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1-10
  24. Hardie, D. G., Scott, J. W., Pan, A. and Hudson, E. R. (2003)Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113-120 https://doi.org/10.1016/S0014-5793(03)00560-X
  25. Hardie, D. G. and Carling, D. (1997) The AMP-activated protein kinase-fuel gauge of the mammalian cells? Eur. J. Biochem. 246, 259-273 https://doi.org/10.1111/j.1432-1033.1997.00259.x
  26. Winder, W. W. (2000) AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol.Ther. 2, 441-448 https://doi.org/10.1089/15209150050194305
  27. Nath, N., Giri, S., Prasad, R., Salem, M. L., Singh, A. K. and Singh, I. (2005) 5-aminoimidazole-4-carboxamide ribonucleoside:a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175, 566-574 https://doi.org/10.4049/jimmunol.175.1.566
  28. Kue, C. L., Ho, F. M., Chang, M. Y., Prakash, E. and Lin, W.W. (2008) Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J. Cell. Biochem. 103, 931-940 https://doi.org/10.1002/jcb.21466
  29. Giri, S., Nath, N., Smith, B., Viollet, B., Singh, A. K. and Singh, I. (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glia cells: a possible role of AMP-activated protein kinase. J. Neurosci. 24, 479-487 https://doi.org/10.1523/JNEUROSCI.4288-03.2004
  30. Jhun, B. S., Jin, Q., Oh, T. Y., Kim, S. S., Kong, Y., Cho, Y. H.,Ha, J., Baik, H. H. and Kang, I. (2004) 5-aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in Raw 264.7 murine macrophages. Biochem. Biophys. Res. Commun. 318, 372-380 https://doi.org/10.1016/j.bbrc.2004.04.035
  31. Richard, J. P., Melikov, K., Vives, E., Rmos, C., Vereure,B., Gait, M. J., Chernomordik, L. V. and Lebleu, B. (2003)Cell penetrating peptides: a reevaluaation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590 https://doi.org/10.1074/jbc.M209548200
  32. Cashman, S. M., Morris, D. J. and Kuman-Singh, R. (2003)Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
  33. Lee, Y. P., Kim, D. W., Lee, M. J., Jeong, M. S., Kim, S. Y.,Lee, S. H., Jang, S. H., Park, J., Kang, T. C., Won, M. H.,Cho, S. W., Kwon, O. S., Eum, W. S. and Choi, S. Y. (2008) Human brain pyridoxal-5’-phosphate phosphatase (PLPP) protein transduction of PEP-1-PLPP into PC12 cells. BMB rep. 4, 408-413
  34. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W.,Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068 https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  35. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y.S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemoprventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481, 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  36. Prescott, S. M. and Fitzpatrick, F. A. (2000) Cyclooxygenase-2 and carcinogenesis. Biochim. Biophys. Acta 1470, M69-78
  37. Chun, K. S., Cha, H. H., Shin, J. W., Na, H. K., Park, K. K.,Chung, W. Y. and Surh, Y. J. (2004) Nitric oxide induces expression of cyclooxygenase-2 in mouse skin through activation of NF-kappa B. Carcinogenesis 25, 445-454 https://doi.org/10.1093/carcin/bgh021
  38. Eum, W. S., Kim D. W., Hwang, I. K., Yoo, K. Y., Kang, T.C., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S.Y., Kwon, H. Y., Kang, J. H., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Won, M. H. and Choi, S. Y. (2004) In vivo protein transduction: biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  39. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  40. Zhang, S. Y., Park, K. W., Oh, S., Cho, H. J., Cho, H. J.,Park, J. S., Cho, Y. S., Koo, B. K., Chae, I. H., Choi, D. J.,Kim, H. S. and Lee, M. M. (2005) NF-kappaB decoy potentiates the effects of radiation on vascular smooth muscle cell by enhancing apoptosis. Exp. Mol. Med. 37, 18-26 https://doi.org/10.1038/emm.2005.3

Cited by

  1. PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.083
  2. Transduced PEP-1-FK506BP ameliorates corneal injury in Botulinum toxin A-induced dry eye mouse model vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.272
  3. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts vol.423, pp.1-2, 2016, https://doi.org/10.1007/s11010-016-2835-6
  4. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model vol.411, pp.2, 2011, https://doi.org/10.1016/j.bbrc.2011.06.147
  5. Adiponectin: mechanisms and new therapeutic approaches for restoring diabetic heart sensitivity to ischemic post-conditioning vol.7, pp.3, 2013, https://doi.org/10.1007/s11684-013-0283-1
  6. S632A3, a new glutarimide antibiotic, suppresses lipopolysaccharide-induced pro-inflammatory responses via inhibiting the activation of glycogen synthase kinase 3β vol.318, pp.20, 2012, https://doi.org/10.1016/j.yexcr.2012.08.008
  7. Transduced PEP-1–heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury vol.187, pp.1, 2014, https://doi.org/10.1016/j.jss.2013.09.040
  8. PEP-1–metallothionein-III protein ameliorates the oxidative stress-induced neuronal cell death and brain ischemic insults vol.1820, pp.10, 2012, https://doi.org/10.1016/j.bbagen.2012.06.012
  9. Flufenamic acid promotes angiogenesis through AMPK activation vol.42, pp.6, 2013, https://doi.org/10.3892/ijo.2013.1891