DOI QR코드

DOI QR Code

The role of neuroinflammation on the pathogenesis of Parkinson's disease

  • Chung, Young-Cheul (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Ko, Hyuk-Wan (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Bok, Eu-Gene (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Park, Eun-Soo (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Huh, Sue-Hee (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Nam, Jin-Han (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University) ;
  • Jin, Byung-Kwan (Department of Biochemistry & Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University)
  • Published : 2010.04.30

Abstract

Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.

Keywords

References

  1. Dauer, W. and Przedborski, S. (2003) Parkinson's disease:mechanisms and models. Neuron 39, 889-909 https://doi.org/10.1016/S0896-6273(03)00568-3
  2. Savitt, J. M., Dawson, V. L. and Dawson, T. M. (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 1744-1754 https://doi.org/10.1172/JCI29178
  3. Greenfield, J. G. and Bosanquet, F. D. (1953) The brainstem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiatry. 16, 213-226 https://doi.org/10.1136/jnnp.16.4.213
  4. Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N. and Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197-211 https://doi.org/10.1016/S0197-4580(02)00065-9
  5. Meredith, G. E., Sonsalla, P. K. and Chesselet, M. F. (2008) Animal models of Parkinson's disease progression. Acta. Neuropathol. 115, 385-398 https://doi.org/10.1007/s00401-008-0350-x
  6. Chesselet, M. F. (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp. Neurol. 209, 22-27 https://doi.org/10.1016/j.expneurol.2007.08.006
  7. Fornai, F., Schluter, O. M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., Lazzeri, G., Busceti, C. L., Pontarelli, F., Battaglia, G., Pellegrini, A., Nicoletti, F., Ruggieri, S., Paparelli, A. and Sudhof, T. C. (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alphasynuclein. Proc. Natl. Acad. Sci. U.S.A. 102, 3413-3418 https://doi.org/10.1073/pnas.0409713102
  8. Stack, E. C., Ferro, J. L., Kim, J., Del Signore, S. J., Goodrich, S., Matson, S., Hunt, B. B., Cormier, K., Smith, K., Matson, W. R., Ryu, H. and Ferrante, R. J. (2008) Therapeutic attenuation of mitochondrial dysfunction and oxidative stress in neurotoxin models of Parkinson's disease. Biochim. Biophys. Acta. 1782, 151-162 https://doi.org/10.1016/j.bbadis.2007.12.006
  9. Miller, R. L., James-Kracke, M., Sun, G. Y. and Sun, A. Y. (2009) Oxidative and inflammatory pathways in Parkinson's disease. Neurochem. Res. 34, 55-65 https://doi.org/10.1007/s11064-008-9656-2
  10. Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98 https://doi.org/10.1016/j.pneurobio.2005.06.004
  11. Choi, D. K., Pennathur, S., Perier, C., Tieu, K., Teismann, P., Wu, D. C., Jackson-Lewis, V., Vila, M., Vonsattel, J. P., Heinecke, J. W. and Przedborski. S. (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J. Neurosci. 25, 6594-6600 https://doi.org/10.1523/JNEUROSCI.0970-05.2005
  12. Hirsch, E. C. and Hunot, S. (2009) Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet. Neurol. 8, 382-397 https://doi.org/10.1016/S1474-4422(09)70062-6
  13. Lawson, L. J., Perry, V. H., Dri, P. and Gordon, S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151-170 https://doi.org/10.1016/0306-4522(90)90229-W
  14. Morris, L., Graham, C. F. and Gordon, S. (1991) Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 112, 517-526
  15. Nimmerjahn, A., Kirchhoff, F. and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318 https://doi.org/10.1126/science.1110647
  16. Giulian, D., Johnson, B., Krebs, J. F., George, J. K. and Tapscott, M. (1991) Microglial mitogens are produced in the developing and injured mammalian brain. J. Cell. Biol. 112, 323-333 https://doi.org/10.1083/jcb.112.2.323
  17. Kreutzberg, G. W. (1996) Microglia: a sensor for pathological events in the CNS. Trends. Neurosci. 19, 312-318 https://doi.org/10.1016/0166-2236(96)10049-7
  18. Stence, N., Waite, M. and Dailey, M. E. (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33, 256-266 https://doi.org/10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J
  19. Woodroofe, M. N., Bellamy, A. S., Feldmann, M., Davison, A. N. and Cuzner, M. L. (1986) Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J. Neurol. Sci. 74, 135-152 https://doi.org/10.1016/0022-510X(86)90100-0
  20. Graeber, M. B., Streit, W. J. and Kreutzberg, G. W. (1988) Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21, 18-24 https://doi.org/10.1002/jnr.490210104
  21. Kim, S. U. and de Vellis, J. (2005) Microglia in health and disease. J. Neurosci. Res. 81, 302-313 https://doi.org/10.1002/jnr.20562
  22. Orr, C. F., Rowe, D. B. and Halliday, G. M. (2002) An inflammatory review of Parkinson's disease. Prog. Neurobiol. 68, 325-340 https://doi.org/10.1016/S0301-0082(02)00127-2
  23. Hirsch, E. C., Hunot, S., Damier, P. and Faucheux, B. (1998) Glial cells and inflammation in Parkinson's disease: a role in neurodegeneration? Ann. Neurol. 44, S115-120 https://doi.org/10.1002/ana.410440717
  24. McGeer, P. L., Itagaki, S., Boyes, B. E. and McGeer, E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 1285-1291 https://doi.org/10.1212/WNL.38.8.1285
  25. Whitton, P. S. (2007) Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Pharmacol. 150, 963-976 https://doi.org/10.1038/sj.bjp.0707167
  26. Choi, S. H., Joe, E. H., Kim, S. U. and Jin, B. K. (2003) Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23, 5877-5886
  27. Kim, S. R., Chung, E. S., Bok, E., Baik, H. H., Chung, Y. C., Won, S. Y., Joe, E., Kim, T. H., Kim, S. S., Jin, M. Y., Choi, S. H. and Jin, B. K. (2009) Prothrombin kringle-2 induces death of mesencephalic dopaminergic neurons in vivo and in vitro via microglial activation. J. Neurosci. Res. (Epub ahead of print)
  28. Gao, H. M., Liu, B., Zhang, W. and Hong, J. S. (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB J. 17, 1954-1956 https://doi.org/10.1096/fj.03-0109fje
  29. Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., Dawson, V. L., Dawson, T. M. and Przedborski, S. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med. 5, 1403-1409 https://doi.org/10.1038/70978
  30. Wu, D. C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D. K., Ischiropoulos, H. and Przedborski, S. (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22, 1763-1771
  31. Wu, D. C., Teismann, P., Tieu, K., Vila, M., Jackson-Lewis, V., Ischiropoulos, H. and Przedborski, S. (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 100, 6145-6150 https://doi.org/10.1073/pnas.0937239100
  32. Tieu, K., Ischiropoulos, H. and Przedborski. S. (2003) Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life 55, 329-335 https://doi.org/10.1080/1521654032000114320
  33. Arimoto, T. and Bing, G. (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol. Dis. 12, 35-45 https://doi.org/10.1016/S0969-9961(02)00017-7
  34. Qin, L., Block, M. L., Liu, Y., Bienstock, R. J., Pei, Z., Zhang, W., Wu, X., Wilson, B., Burka, T. and Hong, J. S. (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550-557 https://doi.org/10.1096/fj.04-2857com
  35. Rodriguez-Pallares, J., Parga, J. A., Munoz, A., Rey, P., Guerra, M. J. and Labandeira-Garcia, J. L. (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamineinduced degeneration of dopaminergic neurons. J. Neurochem. 103, 145-156
  36. Choi, S. H., Lee, D. Y., Chung, E. S., Hong, Y. B., Kim, S. U. and Jin, B. K. (2005) Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J. Neurochem. 95, 1755-1765 https://doi.org/10.1111/j.1471-4159.2005.03503.x
  37. Block, M. L. and Hong, J. S. (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans. 35, 1127-1132 https://doi.org/10.1042/BST0351127
  38. Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y. and Hirsch. E. C., (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72, 355-363 https://doi.org/10.1016/0306-4522(95)00578-1
  39. Knott, C., Stern, G. and Wilkin, G. P. (2000) Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci. 16, 724-739 https://doi.org/10.1006/mcne.2000.0914
  40. Le, W. D., Rowe, D. B., Jankovic, J., Xie, W. and Appel, S. H. (1999) Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch. Neurol. 56, 194-200 https://doi.org/10.1001/archneur.56.2.194
  41. Mogi, M., Harada, M., Narabayashi, H., Inagaki, H., Minami, M. and Nagatsu, T. (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci. Lett. 211, 13-16 https://doi.org/10.1016/0304-3940(96)12706-3
  42. Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K. and Nagatsu, T. (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208-210 https://doi.org/10.1016/0304-3940(94)90746-3
  43. Ferger, B., Leng, A., Mura, A., Hengerer, B. and Feldon, J. (2004) Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 89, 822-833 https://doi.org/10.1111/j.1471-4159.2004.02399.x
  44. Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894 https://doi.org/10.1093/brain/awn101
  45. Klevenyi, P., Andreassen, O., J. Ferrante, R. J., Schleicher, R., Jr., Friedlander, R. M. and Beal, M. F. (1999) Transgenic mice expressing a dominant negative mutant interleukin-1beta converting enzyme show resistance to MPTP neurotoxicity. Neuroreport 10, 635-638 https://doi.org/10.1097/00001756-199902250-00035
  46. Sriram, K., Matheson, J. M., Benkovic, S. A., Miller, D. B., Luster, M. I. and O'Callaghan, J. P. (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J. 16, 1474-1476 https://doi.org/10.1096/fj.02-0216fje
  47. Tower, D. B. and Young, O. M. (1973) The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J. Neurochem. 20, 269-278 https://doi.org/10.1111/j.1471-4159.1973.tb12126.x
  48. Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C. and MacVicar, B. A. (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745-749 https://doi.org/10.1038/nature07525
  49. Mulligan, S. J. and MacVicar, B. A. (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195-199 https://doi.org/10.1038/nature02827
  50. Danbolt, N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1-105 https://doi.org/10.1016/S0301-0082(00)00067-8
  51. Anastasia, A., Torre, L., de Erausquin, G. A. and Masco, D. H. (2009) Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson's disease. J. Neurochem. 109, 755-765 https://doi.org/10.1111/j.1471-4159.2009.06001.x
  52. Wilhelmsson, U., Bushong, E. A., Price, D. L., Smarr, B. L., Phung, V., Terada, M., Ellisman, M. H. and Pekny, M. (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci. U.S.A. 103, 17513-17518 https://doi.org/10.1073/pnas.0602841103
  53. Nutt, J. G. and Wooten, G. F. (2005) Clinical practice. Diagnosis and initial management of Parkinson's disease. N. Engl. J. Med. 353, 1021-1027 https://doi.org/10.1056/NEJMcp043908
  54. McGeer, P. L. and McGeer, E. G. (2008) Glial reactions in Parkinson's disease. Mov. Disord. 23, 474-483 https://doi.org/10.1002/mds.21751
  55. Siegel, G. J. and Chauhan, N. B. (2000) Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain. Res. Brain. Res. Rev. 33, 199-227 https://doi.org/10.1016/S0165-0173(00)00030-8
  56. Saavedra, A., Baltazar, G., Santos, P., Carvalho, C. M. and Duarte, E. P. (2006) Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol. Dis. 23, 533-542 https://doi.org/10.1016/j.nbd.2006.04.008
  57. Sandhu, J. K., Gardaneh, M., Iwasiow, R., Lanthier, P., Gangaraju, S., Ribecco-Lutkiewicz, M., Tremblay, R., Kiuchi, K. and Sikorska, M. (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol. Dis. 33, 405-414 https://doi.org/10.1016/j.nbd.2008.11.016
  58. Chen, P. S., Peng, G. S., Li, G., Yang, S., Wu, X., Wang, C. C., Wilson, B., Lu, R. B., Gean, P. W., Chuang, D. M. and Hong, J. S. (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol. Psychiatry. 11, 1116-1125 https://doi.org/10.1038/sj.mp.4001893
  59. Knott, C., Stern, G., Kingsbury, A., Welcher, A. A. and Wilkin, G. P. (2002) Elevated glial brain-derived neurotrophic factor in Parkinson's diseased nigra. Parkinsonism. Relat. Disord. 8, 329-341 https://doi.org/10.1016/S1353-8020(02)00008-1
  60. Voutilainen, M. H., Back, S., Porsti, E., Toppinen, L., Lindgren, L., Lindholm, P., Peranen, J., Saarma, M. and Tuominen, R. K. (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease. J. Neurosci. 29, 9651-9659 https://doi.org/10.1523/JNEUROSCI.0833-09.2009
  61. Morale, M. C., Serra, P. A., L'Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., Gennuso, F., Giaquinta, G., Rocchitta, G., Desole, M. S., Miele, E. and Marchetti. B. (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138, 869-878 https://doi.org/10.1016/j.neuroscience.2005.07.060
  62. Min, K. J., Yang, M. S., Kim, S. U., Jou, I. and Joe, E. H. (2006) Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J. Neurosci. 26, 1880-1887 https://doi.org/10.1523/JNEUROSCI.3696-05.2006
  63. Jakel, R. J., Townsend, J. A., Kraft, A. D. and Johnson, J. A. (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res. 1144, 192-201 https://doi.org/10.1016/j.brainres.2007.01.131
  64. Siebert, A., Desai, V., Chandrasekaran, K., Fiskum, G. and Jafri, M. S. (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J. Neurosci. Res. 87, 1659-1669 https://doi.org/10.1002/jnr.21975
  65. Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., Schultzberg, M. and Bogdanovic, N. (2009) Blood-brain barrier alterations in ageing and dementia. J. Neurol. Sci. 283, 99-106 https://doi.org/10.1016/j.jns.2009.02.321
  66. Persidsky, Y., Ramirez, S. H., Haorah, J. and Kanmogne, G. D. (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune. Pharmacol. 1, 223-236 https://doi.org/10.1007/s11481-006-9025-3
  67. Zlokovic, B. V. (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178-201 https://doi.org/10.1016/j.neuron.2008.01.003
  68. Kortekaas, R., Leenders, K. L., van Oostrom, J. C., Vaalburg, W., Bart, J., Willemsen, A. T. and Hendrikse, N. H. (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176-179 https://doi.org/10.1002/ana.20369
  69. Faucheux, B. A., Bonnet, A. M., Agid, Y. and Hirsch, E. C. (1999) Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet 353, 981-982
  70. Yasuda, T., Fukuda-Tani, M., Nihira, T., Wada, K., Hattori, N., Mizuno, Y. and Mochizuki, H. (2007) Correlation between levels of pigment epithelium-derived factor and vascular endothelial growth factor in the striatum of patients with Parkinson's disease. Exp. Neurol. 206, 308-317 https://doi.org/10.1016/j.expneurol.2007.05.012
  71. Rite, I., Machado, A., Cano, J. and Venero, J. L. (2007) Bloodbrain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J. Neurochem. 101, 1567-1582 https://doi.org/10.1111/j.1471-4159.2007.04567.x
  72. Chen, X., Lan, X., Roche, I., Liu, R. and Geiger, J. D. (2008) Caffeine protects against MPTP-induced bloodbrain barrier dysfunction in mouse striatum. J. Neurochem. 107, 1147-1157
  73. Yan, E., Castillo-Melendez, M., Nicholls, T., Hirst, J. and Walker, D. (2004) Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr. Res. 55, 855-863 https://doi.org/10.1203/01.PDR.0000115681.95957.D4
  74. Ji, K. A., Yang, M. S., Jeong, H. K., Min, K. J., Kang, S. H., Jou, I. and Joe, E. H. (2007) Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 55, 1577-1588 https://doi.org/10.1002/glia.20571
  75. Brochard, V., Combadiere, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C. and Hunot, S. (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182-192
  76. Li, G., Cui, G., Tzeng, N. S., Wei, S. J., Wang, T., Block, M. L. and Hong, J. S. (2005) Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J. 19, 489-496 https://doi.org/10.1096/fj.04-2555com
  77. Ghosh, A., Roy, A., Matras, J., Brahmachari, S., Gendelman, H. E. and Pahan, K. (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease. J. Neurosci. 29, 13543-13556 https://doi.org/10.1523/JNEUROSCI.4144-09.2009
  78. Kurkowska-Jastrzebska, I., Babiuch, M., Joniec, I., Przybylkowski, A., Czlonkowski, A. and Czlonkowska, A. (2002) Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int Immunopharmacol 2, 1213-1218 https://doi.org/10.1016/S1567-5769(02)00078-4
  79. Kurkowska-Jastrzebska, I., Litwin, T., Joniec, I., Ciesielska, A. Przybylkowski, A., Czlonkowski, A. and Czlonkowska. A. (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Int. Immunopharmacol. 4, 1307-1318 https://doi.org/10.1016/j.intimp.2004.05.006

Cited by

  1. The Endotoxin-Induced Neuroinflammation Model of Parkinson's Disease vol.2011, 2011, https://doi.org/10.4061/2011/487450
  2. Mechanisms of antidepressant action: An integrated dopaminergic perspective vol.35, pp.7, 2011, https://doi.org/10.1016/j.pnpbp.2011.03.005
  3. MMP-3 Contributes to Nigrostriatal Dopaminergic Neuronal Loss, BBB Damage, and Neuroinflammation in an MPTP Mouse Model of Parkinson’s Disease vol.2013, 2013, https://doi.org/10.1155/2013/370526
  4. Late-onset Parkinsonism in NF B/c-Rel-deficient mice vol.135, pp.9, 2012, https://doi.org/10.1093/brain/aws193
  5. Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson's Disease Incidence vol.2011, 2011, https://doi.org/10.4061/2011/393769
  6. Genetic analysis of HLA-DRA region variation in Taiwanese Parkinson’s disease vol.18, pp.4, 2012, https://doi.org/10.1016/j.parkreldis.2011.12.014
  7. Inflammatory Cells and Cytokines in the Olfactory Bulb of a Rat Model of Neuroinflammation; Insights into Neurodegeneration? vol.33, pp.7, 2013, https://doi.org/10.1089/jir.2012.0088
  8. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration vol.11, 2017, https://doi.org/10.3389/fncel.2017.00216
  9. An angiogenic inhibitor, cyclic RGDfV, attenuates MPTP-induced dopamine neuron toxicity vol.231, pp.1, 2011, https://doi.org/10.1016/j.expneurol.2011.06.004
  10. Rho Kinase and Dopaminergic Degeneration vol.21, pp.6, 2015, https://doi.org/10.1177/1073858414554954
  11. Role of Prostaglandins in Neuroinflammatory and Neurodegenerative Diseases vol.2012, 2012, https://doi.org/10.1155/2012/946813
  12. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? vol.70, pp.20, 2013, https://doi.org/10.1007/s00018-013-1290-8
  13. D-β-hydroxybutyrate inhibits microglial activation in a cell activation model in vitro vol.26, pp.3, 2011, https://doi.org/10.1016/S1000-1948(11)60042-7
  14. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy vol.6, 2014, https://doi.org/10.3389/fnagi.2014.00171
  15. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson’s Disease Model vol.53, pp.5, 2016, https://doi.org/10.1007/s12035-015-9267-2
  16. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease vol.49, pp.3, 2017, https://doi.org/10.1038/emm.2016.159
  17. n-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats vol.33, pp.4, 2012, https://doi.org/10.1016/j.neuro.2012.02.018
  18. TREK-King the Blood–Brain-Barrier vol.9, pp.3, 2014, https://doi.org/10.1007/s11481-014-9530-8
  19. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses vol.13, pp.1, 2015, https://doi.org/10.1186/s12916-014-0259-2
  20. iTRAQ technology-based identification of human peripheral serum proteins associated with depression vol.330, 2016, https://doi.org/10.1016/j.neuroscience.2016.05.055
  21. Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes vol.63, pp.5, 2013, https://doi.org/10.1016/j.neuint.2013.07.003
  22. Specific Changes of Serum Proteins in Parkinson's Disease Patients vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0095684
  23. Neuroinflammation: A Common Pathway in CNS Diseases as Mediated at the Blood-Brain Barrier vol.19, pp.2, 2012, https://doi.org/10.1159/000330247
  24. Cannabinoids prevent lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through inhibition of microglial activation and NADPH oxidase vol.1451, 2012, https://doi.org/10.1016/j.brainres.2012.02.058
  25. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1 2017, https://doi.org/10.1016/j.jns.2017.08.3235
  26. Markers of inflammation in prevalent and incident Parkinson’s disease in the Cardiovascular Health Study vol.18, pp.3, 2012, https://doi.org/10.1016/j.parkreldis.2011.11.003
  27. Evaluation of Nigrostriatal Neurodegeneration and Neuroinflammation Following Repeated Intranasal 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Administration in Mice, an Experimental Model of Parkinson’s Disease vol.25, pp.1, 2014, https://doi.org/10.1007/s12640-013-9401-8
  28. Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson's disease in the rat vol.175, 2011, https://doi.org/10.1016/j.neuroscience.2010.12.005
  29. Neuroprotective effects of nitidine in Parkinson's disease models through inhibiting microglia activation: role of the Jak2–Stat3 pathway vol.6, pp.75, 2016, https://doi.org/10.1039/C6RA11759G
  30. Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction vol.209, pp.3, 2012, https://doi.org/10.1016/j.toxlet.2011.12.021
  31. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress vol.618, 2016, https://doi.org/10.1016/j.neulet.2016.03.003
  32. Treatment with a Substance P Receptor Antagonist Is Neuroprotective in the Intrastriatal 6-Hydroxydopamine Model of Early Parkinson's Disease vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0034138
  33. Triptolide Down-regulates COX-2 Expression and PGE2 Release by Suppressing the Activity of NF-κB and MAP kinases in Lipopolysaccharide-treated PC12 Cells 2012, https://doi.org/10.1002/ptr.3538
  34. Kynurenines in Parkinson’s disease: therapeutic perspectives vol.119, pp.2, 2012, https://doi.org/10.1007/s00702-011-0697-3
  35. Targeting reactive astrogliosis by novel biotechnological strategies vol.30, pp.1, 2012, https://doi.org/10.1016/j.biotechadv.2011.06.016
  36. Neurovascular Unit in Chronic Pain vol.2013, 2013, https://doi.org/10.1155/2013/648268
  37. Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson's disease vol.18, pp.8, 2012, https://doi.org/10.1016/j.parkreldis.2012.04.030
  38. miR-135b Plays a Neuroprotective Role by Targeting GSK3β in MPP+-Intoxicated SH-SY5Y Cells vol.2017, 2017, https://doi.org/10.1155/2017/5806146
  39. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain vol.9, 2016, https://doi.org/10.3389/fnmol.2016.00019
  40. Injury-stimulated Sonic hedgehog expression in microglia contributes to neuroinflammatory response in the MPTP model of Parkinson's disease vol.482, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2016.11.144
  41. PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.083
  42. Brain barriers in health and disease vol.107, 2017, https://doi.org/10.1016/j.nbd.2017.05.008
  43. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways vol.37, pp.3, 2016, https://doi.org/10.1038/aps.2015.138
  44. Parkinson's Disease and Systemic Inflammation vol.2011, 2011, https://doi.org/10.4061/2011/436813
  45. Association of polymorphisms and reduced expression levels of the NR4A2 gene with Parkinson's disease in a Mexican population vol.379, 2017, https://doi.org/10.1016/j.jns.2017.05.029
  46. Neurochemistry and the non-motor aspects of PD vol.46, pp.3, 2012, https://doi.org/10.1016/j.nbd.2011.10.019
  47. Correlation between Serum RANTES Levels and the Severity of Parkinson’s Disease vol.2014, 2014, https://doi.org/10.1155/2014/208408
  48. Transforming growth factor-β1 acts via TβR-I on microglia to protect against MPP+-induced dopaminergic neuronal loss vol.51, 2016, https://doi.org/10.1016/j.bbi.2015.08.006
  49. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? vol.13, pp.10, 2011, https://doi.org/10.1111/j.1462-5822.2011.01661.x
  50. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases vol.68, pp.6, 2011, https://doi.org/10.1007/s00018-010-0525-1
  51. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease vol.62, pp.7, 2012, https://doi.org/10.1016/j.neuropharm.2012.01.028
  52. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease vol.48, pp.1, 2016, https://doi.org/10.1038/emm.2015.100
  53. The blood-brain barrier in health and disease vol.72, pp.5, 2012, https://doi.org/10.1002/ana.23648
  54. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory vol.218, pp.9, 2013, https://doi.org/10.1016/j.imbio.2013.04.008
  55. Reaffirmation of GAK, but not HLA-DRA, as a Parkinson's disease susceptibility gene in a Taiwanese population vol.162, pp.8, 2013, https://doi.org/10.1002/ajmg.b.32188
  56. Inhibitory effect ofPetalonia binghamiaeon neuroinflammation in LPS-stimulated microglial cells vol.50, pp.1, 2017, https://doi.org/10.4163/jnh.2017.50.1.25
  57. White matter damage and systemic inflammation in Parkinson’s disease vol.18, pp.1, 2017, https://doi.org/10.1186/s12868-017-0367-y
  58. MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue vol.401, pp.1, 2011, https://doi.org/10.1007/s00216-011-5043-y
  59. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy vol.119, pp.1, 2012, https://doi.org/10.1007/s00702-011-0684-8
  60. Mechanisms of islet amyloidosis toxicity in type 2 diabetes vol.587, pp.8, 2013, https://doi.org/10.1016/j.febslet.2013.01.017
  61. Inhibition of Microglia-Derived Oxidative Stress by Ciliary Neurotrophic Factor Protects Dopamine Neurons In Vivo from MPP+ Neurotoxicity vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113543
  62. Interaction of systemic oxidative stress and mesial temporal network degeneration in Parkinson’s disease with and without cognitive impairment vol.15, pp.1, 2018, https://doi.org/10.1186/s12974-018-1317-z
  63. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo vol.50, pp.7, 2018, https://doi.org/10.1038/s12276-018-0111-4
  64. Disruption of Inferior Longitudinal Fasciculus Microstructure in Parkinson's Disease: A Systematic Review of Diffusion Tensor Imaging Studies vol.9, pp.1664-2295, 2018, https://doi.org/10.3389/fneur.2018.00598
  65. Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1203-9
  66. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00417