DOI QR코드

DOI QR Code

Extraction Conditions of Radical Scavenging Caffeoylquinic Acids from Gomchui (Ligularia fischeri) Tea

곰취차로부터 라디칼 소거능을 갖는 Caffeoylquinic Acid류 화합물의 추출조건

  • Kim, Sang-Min (Natural Product Research Center, KIST Gangneung Institute) ;
  • Kang, Suk-Woo (Natural Product Research Center, KIST Gangneung Institute) ;
  • Um, Byung-Hun (Natural Product Research Center, KIST Gangneung Institute)
  • 김상민 (한국과학기술연구원 강릉분원 천연물연구센터) ;
  • 강석우 (한국과학기술연구원 강릉분원 천연물연구센터) ;
  • 엄병헌 (한국과학기술연구원 강릉분원 천연물연구센터)
  • Published : 2010.03.31

Abstract

After Gomchui tea was prepared from leaves of Ligularia fischeri (Ledeb.) Turcz by blanching method, the antioxidant activity of major compounds in Gomchui tea was assessed. On-line HPLC-ABTS analysis revealed that caffeoylquinic acids (chlorogenic acids), such as 5-O-caffeoylquinic acid (5-CQA), 3,4-di-O-caffeoylquinic acid (3,4-DCQA), 3,5-di-O-caffeoylquinic acid (3,5-DCQA) and 4,5-di-O-caffeoylquinic acid (4,5-DCQA), were the major antioxidant compounds in Gomchui tea. The extraction efficiency of these compounds were examined in the various conditions such as extraction temperature, time and solvent. The results demonstrated that the extraction amount with water increased in proportion to extraction time (1~10 min) and temperature ($8{\sim}80^{\circ}C$). These active compounds were also extracted with water even at $8^{\circ}C$ (60% of $80^{\circ}C$), indicating that water is very good extraction solvent for extraction of these antioxidant constituents. However, the extraction efficiency of these compounds decreased when ethanol percentage in water increased. The extraction efficiency between Gomchui powder (no blanching) and tea was significantly different, and 60% of total antioxidant compounds in tea was removed from fresh leaves into water in blanching process, especially 3,5-DCQA (over 90%). Meanwhile, the sonication method didn't affect the extraction of these compounds in all solvents. These results suggest that Gomchui tea can be a good candidate for the tea beneficial to human health.

본 연구에서는 항산화 기능이 잘 알려진 곰취로부터 곰취의 소비 및 활용도 향상을 위하여 곰취차를 제조한 후 주요 항산화물질을 탐색하고, 이들 성분의 추출율 변화를 분석하였다. 우선 온라인 항산화 장치를 통하여 곰취 추출물의 주요 항산화 성분이 5-CQA, 3,4-DCQA, 3,5-DCQA 및 4,5-DCQA로 구성된 caffeoylquinic acid류의 화합물임을 확인할 수 있었다. 곰취차에서 이들 성분의 추출율 변화를 추출 온도, 시간, 용매 및 추출 방법 등에 따라 비교 분석하였는데, 물에서의 추출율은 어느 온도에서든지 10분의 분석시간 동안 증가하는 것을 관찰할 수 있었다. 특히 $8^{\circ}C$에서의 추출율도 매우 우수하였는데, $80^{\circ}C$ 추출율의 약 60%의 유효성분이 10분 동안 추출되는 것을 확인할 수 있었다. 에탄올 함량에 따른 곰취차의 추출율에서도 추출시간에 따라 추출율이 증가하였지만, 에탄올의 함량이 많아질수록 추출율은 감소하였는데, 특히 100% 에탄올 조건에서는 추출율이 현저히 감소하였다. 곰취차의 제조 과정 중 블렌칭 단계에서는 곰취분말로부터 약 60% 이상의 항산화성분이 물로 유출되는 것이 확인되었다. 3,5-DCQA의 경우에는 90% 이상의 손실을 나타내어, 곰취분말에서는 3,5-DCQA가 가장 많이 추출되는 반면 곰취차에서는 3,4-DCQA가 가장 추출율이 높은 항산화성분이었다. 한편 초음파 추출법은 일반 추출법에 비해 항산화 성분의 추출율에는 큰 영향을 주지 않았다. 본 연구를 통해서 곰취가 차로 만들어졌을 경우에 항산화 성분을 다량 함유하고 있고, 찬물에서도 쉽게 이용할 수 있는 건강기능차로서 그 효용성과 편리성이 매우 좋을 것으로 기대된다.

Keywords

References

  1. Cho SD, Kim SD. 2005. Food product development and quality characterization of Ligularia fischeri for food resources. Kor J Food Preserv 12: 43-47.
  2. Bae JH, Yu SO, Kim YM, Chon SU, Kim BW, Heo BG. 2009. Physiological activity of methanol extracts from Ligularia fischeri and their hyperplasia inhibition activity of cancer cell. J Bio-Environ Control 18: 67-73.
  3. Ham SS, Lee SY, Oh DH, Jung SW, Kim SH, Jeong CH, Kang IJ. 1998. Cytotoxicity of Ligularia fischeri extracts. J Korean Soc Food Sci Nutr 27: 987-992.
  4. Na Y, Kim JH, Sim GS, Lee BC, Pyo HB. 2006. Effect of antioxidation and inhibition of matrix metalloproteinase-1 from Ligularia fischeri . J Soc Cosmet Scientists Korea 32: 129-134.
  5. Ham SS, Lee SY, Oh DH, Jung SW, Kim SH, Chung CK, Kang IJ. 1998. Antimutagenic and antigenotoxic effects of Ligularia fischeri extracts. J Korean Soc Food Sci Nutr 27: 745-750.
  6. Choi EM. 2007. Ligularia fischeri leaf extract prevents the oxidative stress in DBA/1J mice with type II collagen-induced arthritis. J Appl Toxicol 27: 176-182. https://doi.org/10.1002/jat.1190
  7. Jeong SW, Kim EJ, Hwangbo HJ, Ham SS. 1998. Effects of Ligularia fischeri extracts on oxidation of low density lipoprotein. Korean J Food Sci Technol 30: 1214-1221.
  8. Choi EM, Ding Y, Nguyen HT, Park SH, Kim YH. 2007. Antioxidant activity of Gomchi (Ligularia fischeri ) leaves. Food Sci Biotechnol 16: 710-714.
  9. Choi EM, Kim YH. 2008. A preliminary study of the effects of an extract of Ligularia fischeri leaves on type II collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol 46: 375-379. https://doi.org/10.1016/j.fct.2007.08.018
  10. Choi EM, Suh KS. 2009. Ligularia fischeri leaf extract suppresses proinflammatory mediators in SW982 human synovial cells. Phytother Res 23: 1575-1580. https://doi.org/10.1002/ptr.2823
  11. Park HJ, Kwon SH, Yoo KO, Sohn IC, Lee KT, Lee HK. 2000. Sesquiterpenes from the leaves of Ligularia fischeri var. spiciformis. Planta Med 66: 783-784. https://doi.org/10.1055/s-2000-9602
  12. Hwang BY, Lee JH, Koo TH, Kim HS, Hong YS, Ro JS, Lee KS, Lee JJ. 2002. Furanoligularenon, an eremophilane from Ligularia fischeri , inhibits the LPS-induced production of nitric oxide and prostaglandin E2 in macrophage RAW264.7 cells. Planta Med 68: 101-105. https://doi.org/10.1055/s-2002-20250
  13. Lee KT, Koo SJ, Jung SH, Choi JW, Jung HJ, Park HJ. 2002. Structure of three new terpenoids, spiciformisins a and b, and monocyclosqualene, isolated from the herbs of Ligularia fischeri var. spiciformis and cytotoxicity. Arch Pharm Res 25: 820-823. https://doi.org/10.1007/BF02976998
  14. Zhang WJ, Qi HY, Shi YP. 2010. Norsesquiterpene derivatives from the roots of Ligularia fischeri . Planta Med 76: 159-164. https://doi.org/10.1055/s-0029-1186036
  15. Choi JW, Park JK, Lee KT, Park KK, Kim WB, Lee JH, Jung HJ, Park HJ. 2005. In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid. J Med Food 8: 348-352.
  16. Kim CY, Lee HJ, Lee EH, Jung SH, Lee DU, Kang SW, Hong SJ, Um BH. 2008. Rapid identification of radical scavenging compounds in blueberry extract by HPLC coupled to an on-line ABTS based assay and HPLC-ESI/MS. Food Sci Biotechnol 17: 846-849.
  17. Fusco D, Colloca G, Lo Monaco MR, Cesari M. 2008. Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2: 377-387.
  18. Ozgen M, Reese RN, Tulio AZ Jr, Scheerens JC, Miller AR. 2006. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54: 1151-1157. https://doi.org/10.1021/jf051960d
  19. Niederländer HA, van Beek TA, Bartasiute A, Koleva II. 2008. Antioxidant activity assays on-line with liquid chromatography. J Chromatogr A 1210: 121-134. https://doi.org/10.1016/j.chroma.2008.09.061
  20. Cliffoed MN. 1999. Chlorogenic acid and other cinnamates-nature, occurrence, and dietary burden. J Sci Food Agric 79: 362-372. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
  21. Bonita JS, Mandarano M, Shuta D, Vinson J. 2007. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res 55: 187-198. https://doi.org/10.1016/j.phrs.2007.01.006
  22. Moon JK, Yoo HS, Shibamoto T. 2009. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. J Agric Food Chem 57: 5365-5369. https://doi.org/10.1021/jf900012b
  23. Perva-Uzunalic A, Skerget M, Knez Z, Weinreich B, Otto F, Gruner S. 2006. Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem 96: 597-605. https://doi.org/10.1016/j.foodchem.2005.03.015
  24. Turkmen N, Sari F, Velioglu S. 2006. Effect of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem 99: 835-841 https://doi.org/10.1016/j.foodchem.2005.08.034

Cited by

  1. Effect of Fermented Water Extracts from Ligularia fischeri on Hepatotoxicity Induced by D-Galactosamine in Rats vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1422
  2. Effects of Fermented Water Extracts from Ligularia fischeri on Hepatotoxicity in Ethanol-Induced Rats vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1431
  3. Quality Characteristics of Tofu Added Ligularia fischeri Powder vol.28, pp.5, 2013, https://doi.org/10.7318/KJFC/2013.28.5.495
  4. Method for Validation of Caffeoylquinic Acid Derivatives in Ligularia fischeri Leaf Extract as Functional Ingredients vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.061
  5. Content of Antioxidative Caffeoylquinic Acid Derivatives in Field-GrownLigularia fischeri(Ledeb.) Turcz and Responses to Sunlight vol.60, pp.22, 2012, https://doi.org/10.1021/jf300976y
  6. Breeding of ‘Gommany’ Cultivar of Gomchwi with Disease Resistant, High Quality, and Yield vol.29, pp.5, 2016, https://doi.org/10.7732/kjpr.2016.29.5.625
  7. Preventive effect of Ligularia fischeri on inhibition of nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophages depending on cooking method vol.47, pp.1, 2014, https://doi.org/10.1186/0717-6287-47-69
  8. Comparative Study of Biological Activities at Different Harvesting Times and New Varieties for Highland Culture of Gom-chwi vol.28, pp.4, 2015, https://doi.org/10.7732/kjpr.2015.28.4.391
  9. Analysis of Chemical Compositions and Electron-Donating Ability of 4 Korean Wild Sannamuls vol.19, pp.2, 2011, https://doi.org/10.7783/KJMCS.2011.19.2.111
  10. HPLC Analysis, Optimization of Extraction Conditions and Biological Evaluation of Corylopsis coreana Uyeki Flos vol.21, pp.1, 2016, https://doi.org/10.3390/molecules21010094
  11. Comparative analysis of elemental compositions of selected edible wild plants vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.330
  12. 고품질 내병 다수성 곰취 신품종 '다목이' 육성 vol.30, pp.4, 2017, https://doi.org/10.7732/kjpr.2017.30.4.475
  13. 추출방법을 달리한 곰취(Ligularia fischeri) 추출물의 항산화 및 생리활성에 관한 연구 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1113
  14. Development of 'Sammany', a New Variety of Gomchwi with Powdery Mildew Resistance and High Yield vol.31, pp.6, 2010, https://doi.org/10.7732/kjpr.2018.31.6.714
  15. 내병 다수성 곰취 신품종 '수마니' 육성 vol.33, pp.2, 2010, https://doi.org/10.7732/kjpr.2020.33.2.080
  16. 곰취 '쌈마니' 품종의 재배지역 및 수확기별 항산화 활성 비교 vol.33, pp.4, 2020, https://doi.org/10.7732/kjpr.2020.33.4.245
  17. 내병 다수성 곰취 신품종 '그린베어' 육성 vol.34, pp.4, 2010, https://doi.org/10.7732/kjpr.2021.34.4.339