DOI QR코드

DOI QR Code

Biomimetic Apatite Precipitated on the Surface of Titanium Powder

티타늄분말의 표면에 석출된 생체모방 아파타이트

  • Kim, Jong-Hee (School of Materials Science and Engineering, Pusan National University) ;
  • Sim, Young-Uk (School of Materials Science and Engineering, Pusan National University) ;
  • Yang, Tae-Young (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University)
  • Published : 2010.03.31

Abstract

Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.

Keywords

References

  1. M. Long and H. J. Rack, “Titanium Alloy in Total Joint Replacement-A Materials Science Perspective,” Biomaterials, 19 1621-39 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  2. X. Y. Liu, K. C. Paul, and C. X. Ding, “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Mater. Sci. Eng. R, 47 49-121 (2004). https://doi.org/10.1016/j.mser.2004.11.001
  3. M. Wang, “Developing Bioactive Composite Materials for Tissue Replacement,” Biomaterials, 24 2133-51 (2003). https://doi.org/10.1016/S0142-9612(03)00037-1
  4. M. G. V. Jose, S. Eduardo, P. T. Antoni, O. Takeo, S. Katsuaki, W. M. Grayson, and J. M. Sally, “Novel Bioactive Functionally Graded Coatings on Ti6Al4V,” Adv. Mater., 12 894-99 (2000). https://doi.org/10.1002/1521-4095(200006)12:12<894::AID-ADMA894>3.0.CO;2-4
  5. C. F. Feng, K. A. Khor, E. I. Liu, and P. Cheang, “Phase Transformations in Plasma Sprayed Hydroxyapatite Coatings,” Scripta. Mater., 42 103-9 (2000).
  6. X. B. Zheng, M. H. Huang, and C. X. Ding, “Bond Strength of Plasma-sprayed Hydroxyapatite/Ti Composite Coatings,” Biomaterials, 21 841-49 (2000).
  7. M. F. Hsieh, L. H. Perng, and T. S. Chin, “Hydroxyapatite Coating on Ti6Al4V Alloy Using a Sol-gel Derived Precursor,” Mater. Chem. Phys., 74 245-50 (2002).
  8. E. Milella, F. Cosentino, A. Licciulli, and C. Massaro, “Preparation and Characterisation of Titania/Hydroxyapatite Composite Coatings Obtained by Sol-gel Process,” Biomaterials, 22 1425-31 (2001). https://doi.org/10.1016/S0142-9612(00)00300-8
  9. X. L. Cheng, M. Filiagg, and S. G. Roscoe, “Electrochemically Assisted Co-precipitation of Protein with Calcium Phosphate Coatings on Titanium Alloy,” Biomaterials, 25 5395-403 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.045
  10. M. Shirkhanzadeh, “Calcium Phosphate Coatings Prepared by Electrocrystallization from Aqueous Electrilytes,” J. Mater. Sci. Mater. Med., 6 90-3 (1995). https://doi.org/10.1007/BF00120414
  11. K. de Groot, H. B. Wen, Y. Liu, P. Layrolle, and F. Barrere, “Biomimetic Coatings on Orthopedic Implants: a Review”; pp. 109-16 in Mineralization in natural and synthetic biomaterials. Ed. by P. Li, P. Calvert, T. Kokubo, R. Levy and C. Scheid and P. A. Warrendalc, Materials Research Society, Warrendale, 2000.
  12. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solutions Able to Reptoduce in Vivo Surface-structure Changes in Bioactive Glass-ceramics A-W,” J. Biomed. Mater. Res., 24 721-34 (1990). https://doi.org/10.1002/jbm.820240607
  13. H. Takadama, H. M. Kim, T. Kokubo, and T. Nakamura, “TEM-EDX Study of Mechanism of Bone-like Apatite Formation on Bioactive Titanium Metal in Simulated Body Fluid,” J. Biomed. Mater. Res., 57 441-48 (2001). https://doi.org/10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B
  14. T. Kokubo, F. Miyaji, and H. M. Kim, “Spontaneous Formation of Bonelike Apatite Layer on Chemically Treated Titanium Metals,” J. Am. Ceram. Soc., 4 1127-29 (1996).
  15. T. Kokubo, “Formation of Biologically Active Bone-like Apatite on Metals and Polymers by a Biomimetic Process,” Thermochim. Acta., 280/81 479-90 (1996). https://doi.org/10.1016/0040-6031(95)02784-X
  16. H. M. Kim, “Bioactive Ceramics: Challenges and Perspectives,” J. Ceram. Soc. Jap., 109 S49-57 (2001). https://doi.org/10.2109/jcersj.109.1268_S49
  17. S. Y. Yoon, Y. M. Park, S. S. Park, R. Stevens, and H. C. Park, “Synthesis of Hydroxyapatite Whiskers by Hydrolysis of Alpha Tricalcium Phosphate Using Microwave Heating,” Mater. Chem. Phys., 91 48-53 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.049
  18. Y. M. Park, S. C. Ryu, S. Y. Yoon, R. Stevens, and H. C. Park, “Preparation of Whisker-shaped Hydroxyapatite/Beta Tricalcium Phosphate Composite,” Mater. Chem. Chem., 109 440-7 (2008).
  19. D. Wei, Y. Zhou, D. Jia, and Y. Wang, “Biomimetic Apatite Deposited on Microarc Oxidized Anatase-based Ceramic Coating,” Ceram. Inter., 34 1139-44 (2008). https://doi.org/10.1016/j.ceramint.2007.02.009
  20. S. Koutsopoulos, “Synthesis and Charcaterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods,” J. Biomed. Mater. Res., 62 600-1 (2002). https://doi.org/10.1002/jbm.10280
  21. M. Lenka and A. M. Frank, “Preparation of SBF with different HCO3- content and its Influence on the Composition of Biomimetic Apatites,” Acta. Biomater., 2 181-9 (2006). https://doi.org/10.1016/j.actbio.2005.11.001
  22. W. H. Song, Y. K. Jun, Y. Han, and S. H. Hong, “Biomimetic Apatite Coatings on Micro-arc Oxidized Titania,” Biomaterials, 25 3341-49 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.103