DOI QR코드

DOI QR Code

Thermal Property of 2D-Disordered Tungsten Chalcogenides

2차원적으로 무질서화된 텅스텐 칼코겐화물의 열적특성에 관한 연구

  • Kim, Jong-Young (Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Kyoung-Ju (Korea Institute of Ceramic Engineering and Technology) ;
  • Pee, Jae-Hwan (Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Kwang-Yeon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Soon-Mok (Green Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Seo, Won-Sun (Green Ceramics Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Kyung-Ja (Korea Institute of Ceramic Engineering and Technology)
  • 김종영 (한국세라믹기술원 이천분원) ;
  • 장경주 (한국세라믹기술원 이천분원) ;
  • 피재환 (한국세라믹기술원 이천분원) ;
  • 조광연 (한국세라믹기술원 미래융합세라믹본부) ;
  • 최순목 (한국세라믹기술원 그린세라믹본부) ;
  • 서원선 (한국세라믹기술원 그린세라믹본부) ;
  • 김경자 (한국세라믹기술원 이천분원)
  • Published : 2010.03.31

Abstract

Thermal properties of layered metal chalcogenides such as $WT_2$ (T=S,Se) with two-dimensionally disordered structure were evaluated. Thermal conductivity shows a marked decrease after exfoliation and subsequent restacking because of random stacking of two-dimensional crystalline sheet, which circumvents thermal conduction pathways along longitudinal direction in anisotropic materials.

Keywords

References

  1. T.M. Tritt, “Thermoelectric Materials: Holey and Unholey Semiconductors,” Science, 283 804-05 (1999). https://doi.org/10.1126/science.283.5403.804
  2. F.J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science, 285 703-06 (1999).
  3. B.C. Sales, D. Mandrus, and R.K. Williams, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science, 272 1325-28 (1996). https://doi.org/10.1126/science.272.5266.1325
  4. S.J. Poon, “Electronic and Thermoelectric Properties of Half-heusler Alloys,” Semicond. Semimet., 70 37-75 (2001). https://doi.org/10.1016/S0080-8784(01)80136-8
  5. G.S. Nolas, J.L. Cohen, G.A. Slack, and S.B. Schujman, “Semiconducting Ge Clathrates: Promising Candidate for Thermoelectric Applications,” Appl. Phys. Lett., 73 178-80 (1998). https://doi.org/10.1063/1.121747
  6. R. Venkatasubramanian, E. Sivola, T. Colpitts, and O'Quinn, “Thin Film Thermoelectric Devices with High Room Temperature Figures of Merit,” Nature, 413 597-602 (2001). https://doi.org/10.1038/35098012
  7. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297 2229-32 (2002). https://doi.org/10.1126/science.1072886
  8. L.D. Hicks and M.S. Dresselhaus, “The Effect of Quantum Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47 12727-31 (1993) https://doi.org/10.1103/PhysRevB.47.12727
  9. L.D. Hick and M.S. Dresselhaus, “Thermoelectric Figure of merit of Onedimensional Conductor,” Phys. Rev. B, 47 16631-34 (1993) https://doi.org/10.1103/PhysRevB.47.16631
  10. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, “Experimental Study of the Effect of Quantum Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 53 R10493-96 (1996). https://doi.org/10.1103/PhysRevB.53.R10493
  11. J. P. Heremans, C.M. Thrush, D. T. Morelli, and M. Wu, “Thermoelectric Power of Bismuth nanocomposites,” Phys. Rev. Lett., 88 216801-04 (2002). https://doi.org/10.1103/PhysRevLett.88.216801
  12. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T.Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, “Cubic $AgPb_mSbTe_{2+m}$ : Bulk Thermoelectric Materials with High Figure of Merit,” Science, 303 818-21 (2004). https://doi.org/10.1126/science.1092963
  13. G.J. Snyder and E.S. Toberer, “Complex Thermoelectric Materials,” Nature Mater., 7 105-14 (2008). https://doi.org/10.1038/nmat2090
  14. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320 634-38 (2008). https://doi.org/10.1126/science.1156446
  15. B.C. Sales, D. Mandrus, and R.K. Williams, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science, 272 1325-28 (1996). https://doi.org/10.1126/science.272.5266.1325
  16. J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D'Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, “Nanostructuring and High Thermoelectric Efficiency in p-Type $Ag(Pb_{1-y}Sn_y)_mSbTe_{2+m}$,” Adv. Mater., 18 1170-73 (2006). https://doi.org/10.1002/adma.200502770
  17. P.F.P. Poudeu, J. D'Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, “High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type $Na_{1-x}Pb_mSb_yTe_{m+2}$,” Angew. Chem. Int. Ed., 45 3835-39 (2006). https://doi.org/10.1002/anie.200600865
  18. T.C. Harman, P.J. Taylor, M.P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297 2229-32 (2002). https://doi.org/10.1126/science.1072886
  19. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced Thermoelectric Performace of Rough silicon Wires,” Nature, 451 163-68 (2008). https://doi.org/10.1038/nature06381
  20. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow Thermal Conductivity in Disordered, Layered $WSe_2$ Crystals,” Science, 315 351-53 (2007). https://doi.org/10.1126/science.1136494
  21. H. Tsai, J. Heising, J.L. Schindler, C.R. Kannewurf, and M.G. Kanatzidis, “Exfoliated-restacked Phase of $WS_2$,” J. Amer. Chem. Soc., 9 879-82 (1997)
  22. K. E. Dungey, M. D. Curtis, and J. E. Penner-Hahn, “Structural Characterization of Thermal Stability of $MoS_2$ Intercalation Compounds,” Chem. Mater., 10 2152-61 (1998) https://doi.org/10.1021/cm980034u
  23. J. Heising and M. G. Kanatzidis, “Exfoliated and Restacked $MoS_2$ and WS_2$: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations,” J. Amer. Chem. Soc., 121 11720-32 (1999). https://doi.org/10.1021/ja991644d
  24. D.M.R. Divigalpitiya, R.F. Frindt, and S.R. Morrison, “Inclusion Systems of Organic Molecules in Restacked Single-layer Molybdenum Disulfide,” Science, 246 369-71 (1989). https://doi.org/10.1126/science.246.4928.369
  25. E. Benevente, M.A. Santa Ana, F. Mendizabal, and G. Gonzalez, “Intercalation Chemistry of Molybdenum Disulfide,” Coordination Chem. Rev., 224 87-109 (2002). https://doi.org/10.1016/S0010-8545(01)00392-7
  26. L.S. Volovik, V.V. Fesenko, A.S. Bolgar, S.V. Drozdova, L.A. Klochkov, and V.F. Primachenko, “Enthalpy and heat Capacity of Molybdenum Disulfide”, Powder Metall. Met. Ceram., 17 697 (1978) https://doi.org/10.1007/BF00796559
  27. A.V.Blinder, A.S.Bolgar, and Zh.A. Trofimova, “Thermodynamic Properties of Selenides of Transition Metals,” Powder Metall. Met. Ceram., 32 234-37 (1993). https://doi.org/10.1007/BF00559756
  28. W.J. Schutte, J.L. De Boer, and F. Jellinek, “Crystal Structure of Tungsten Disulfide and Diselenide,” J. Solid State Chem., 70 207-09 (1987). https://doi.org/10.1016/0022-4596(87)90057-0
  29. J.A. Wilson and A.D. Yoffe, “The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties,” Adv. Phys., 18 193-335 (1969). https://doi.org/10.1080/00018736900101307