Antioxidative and Antimicrobial Activities of Monascus pilosus(Corn Silage Mold) Mycelial Extract and Its Culture Filtrate

Monascus pilosus 균사체 및 배양여액의 항산화 및 항균활성

  • Kim, Jae-Won (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Lee, Sang-Il (Department of Food, Nutrition and Culinary Arts, Keimyung College) ;
  • Kim, Sung-Hwan (Kyongbuk Insitute of Health, Environment) ;
  • Lee, Ye-Kyung (Faculty of Food Science and Industrial Technology, Catholic University of Daegu) ;
  • Kim, Soon-Dong (Faculty of Food Science and Industrial Technology, Catholic University of Daegu)
  • 김재원 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 이상일 (계명문화대학교 식품영양조리학부) ;
  • 김성환 (경북보건환경연구원) ;
  • 이예경 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 김순동 (대구가톨릭대학교 외식식품산업학부 식품가공학)
  • Received : 2010.04.08
  • Accepted : 2010.09.10
  • Published : 2010.10.30

Abstract

We evaluated the nutritional value of a Monascus pilosus mycelial ethanolic extract (MEM) and culture filtrate (CFM) by determining the contents of monacolin K and citrinin, and by measuring antioxidant and antimicrobial activities. The yields of freeze-dried MEM and CFM powder were 4.02% and 3.35% of wet weight, respectively. Pigment content ($OD_{500}$ value) of MEM (0.79) and CFM (0.63) were lower than those of commercial rice beni-koji ethanolic extracts (EERB) (0.87), but were in good agreement with the L*, a*, and b* values and the hue angles of the products. The total monacolin K content of MEM (24.91 mg%) was higher than those of CFM (1.27 mg%) and EERB (14.65 mg%). However, the active monacolin K content of EERB (5.48 mg%) was higher than those of MEM (3.35 mg%) and CFM (0.4 mg%). Citrinin was not detected in any sample. The total polyphenol content of MEM (4.68%, w/w) was similar to that of CFM (4.29%, w/w), thus 13.75.20.94% higher than that of EERB. The total flavonoid content of EERB was 6.8.7.0-fold higher than those of MEM (0.64%, w/w) and CFM (0.66%, w/w). The total antioxidant capacity of CFM (3.51%, w/w) was 1.62.2.08-fold higher than those of MEM (2.74%, w/w) and EERB (1.69%, w/w). The electron-donating capacities of 1% (w/v) solutions of CFM, MEM, BHT, and EERB were 86.20%, 77.25%, 77.25%, and 44.82%, respectively, and the corresponding reducing powers ($OD_{700}$ values) were 2.1, 2.4, 1.1, and 1.6, respectively. SOD(superoxide dismutase)-like activities were in the order MEM (39.85%) > BHT (37.68%) > EERB (26.70%) > CFM (21.5%). Although the TBARS (% value) of MEM was a little lower than that of BHT, it was higher than those of CFM and EERB. The antibacterial activities of CFM acting on Bacillus brevis and Escherichia coli were somewhat higher than those of MEM, whereas the activities of MEM on Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, and Salmonella enteritidis were higher than those of CFM. However, the antibacterial activities of MEM and CFM were less than those of EERB and BHT. In conclusion, although further studies are needed, we offer experimental evidence that the by-products of M. pilosus MEM and CFM contain significant antioxidant and antimicrobial activities that may be useful in the development of healthy foods.

M. pilosus를 액침배양하여 얻은 균사체의 ethanol 추출물(MEM)과 그 배양여액(CFM)의 monacolin K 및 citrinin 함량과 항산화 및 항균활성을 조사하였다. MEM과 CFM 동결건조 분말의 수율은 4.02% 및 3.35% 이었다. 색소함량($OD_{500}$)은 MEM (0.79)이 CFM (0.63)보다 25%가 높았으나 시판홍국미 에탄올추출물(EERB) 0.87 보다는 낮았으며 L*값, a*값, b*값 및 hue angle의 결과와 일치하였다. Total monacolin K의 함량은 MEM (24.91 mg%)이 CFM (1.27mg%) 및 EERB (15.03 mg%)에 비하여 높았으나 활성형 monacolin K의 함량은 EERB (5.48 mg%), MEM (3.35 mg%), CFM (0.40 mg%)으로 EERB가 높았다. Citrinin은 모든 시료에서 검출되지 않았다. Total polyphenol 함량은 MEM (4.68%, w/w), CFM (4.29%, w/w), EERB (3.70%, w/w)로 MEM과 CFM에서 높았다. 그러나 total flavonoid 함량은 EERB(4.46%, w/w), MEM(0.64%, w/w), CFM (0.66%, w/w)으로 EERB에서 높았다. 총 항산화능은 CFM이 3.51%(w/w)로 MEM (2.74%, w/w) 및 EERB (1.69%, w/w)보다 높았다. 1%에서의 전자공여능은 MEM (72.25%), CFM (86.20%), BHT (72.25%), EERB (44.82%)로 MEM과 CFM이 BHT보다 높거나 유사하였으며, 환원력도 비슷한 결과를 나타내었다. SOD 유사활성은 MEM (39.85%) > BHT (37.68%) > EERB (26.70%) > CFM (21.35%)순이었으며 아질산염소거능은 CFM (79.42%) > EERB (74.37%) > MEM (62.78%) > BHT (48.46%) 이었다. TBARS(%)는 MEM이 BHT보다 다소 낮았으나 CFM과 EERB보다 높았다. B. brevis와E. coli에 대한 항균성은 CFM이 MEM보다 높았으며 B. subtilis, L. monocytogenes, S. aureus, S. epidermidis, S. enteritidis에 대한 항균성은 MEM이 CFM보다 높았으나 EERB 및 BHT 경우보다는 낮았다.

Keywords

References

  1. Palo MA, Vidal-Adeva L, Maceda L. (1961) A study on ang-kak and its production. Philippines J. Sci., 89, 1-22
  2. Juzlova P, Martinkova L, Kren V. (1996) Secondary metabolites of the fungui Monascus: a review. J. Ind. Microbiol., 16, 163-170 https://doi.org/10.1007/BF01569999
  3. Endo A. (1980) Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Antibiot., 33, 334-336 https://doi.org/10.7164/antibiotics.33.334
  4. Par MZ, Yoon EK, Kim SD. (2002) Stability of pigment troduced by Monascus pilosus. Korean J. Food Sci. Technol., 34, 541-545
  5. Kim EY, Rhyu MR. (2008) Antimicrobial activities of Monascus koji extracts. Korean J. Food Sci. Technol., 40, 76-81
  6. Kang MR, Kim JY, Hyun YJ, Kim HJ, Yeo HY, Song YD, Lee JH. (2008) The effect of red-yeast-rice supplement on serum lipid profile and glucose control in subjects with impaired fasting glucose or impaired glucose tolerance. Korean J. Nutr., 41, 31-40
  7. Kiyoshi I, Yoshio M, Keisuke T, Nobukazu T, Sjpiocjo T, Sjorpi A, Makoto T. (1995) Effect of beni-koji extracts on blood pressure in primary hypertensive volunteers. Jpn. J. Nutr., 53, 263-271 https://doi.org/10.5264/eiyogakuzashi.53.263
  8. Yasukawa K, Takahashi M, Yamanouchi S, Takido M. (1996) Inhibitory effect of oral administration of Monascus pigment on tumor promotion in two-stage carcinogenesis in mouse skin. Oncol., 53, 247-249 https://doi.org/10.1159/000227568
  9. Izawa S, Harada N, Watanabe T, Yamamoto A, Hayatsu H, Arimoto-Kobayashi S. (1997) Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. J. Agric. Food Chem., 45, 3980-3984 https://doi.org/10.1021/jf9703821
  10. Watanabe T, Mazumder TK, Yamamoto A, Nagai S, Arimoto-Kobayashi S, Hayatsu H, Terabe S. (1999) A simple and rapid method for analyzing the Monascus pigmentmediated degradation of mutagenic 3-hydroxyamino-1-methyl -5H-pyrido[4,3-b]indole by in-capillary micellar electrokinetic chromatography. Mutat. Res., 444, 75-83 https://doi.org/10.1016/S1383-5718(99)00096-0
  11. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. (2003) Blood-pressure-lowering effect of a novel fermented milk containing $\gamma$-aminobutyric acid in mild hypertensives. Eur. J. Clin. Nutr., 57, 490-495 https://doi.org/10.1038/sj.ejcn.1601555
  12. Kim CS, Rhee SH, Kim SH. (1977) Studies on production and characteristics of edible red color pigment produced by moli (Monascus sp.). Korean J. Food Sci. Technol., 9, 277-283
  13. Lin CF, Hzuka H. (1982) Production of extracelluar pigment by a mutant of Monascus kaoliang sp. nov. Apv. Environ. Microbiol., 43, 671-676
  14. Wang SF, Holliwell B, Richimond R, Skoweroneck WR. (1981) The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and ascorbic acid. J. Inorg. Biochem., 14, 127-134 https://doi.org/10.1016/S0162-0134(00)80033-1
  15. Eizyro N. (1932) Pigment of Monascus pulpurus Went(Part 1). J. Agric. Chem. Soc. Japan, 8, 1007-1015
  16. Yoshimura MS, Yamanaka K, Mitsugi K, Hirose Y. (1975) Production of Monascus pigment in a submerged culture. Agric. Biol. Chem., 39, 1789-1795 https://doi.org/10.1271/bbb1961.39.1789
  17. Broder CU, Koehler PE. (1980) Pigments produced by M. purpureus with regard to quality and quantity. J. Food Sci., 45, 567-569 https://doi.org/10.1111/j.1365-2621.1980.tb04102.x
  18. Su YC. (1983) Fermentative production of anka pigments. Korea J. Appl. Microbial. Bioeng., 11, 325-337
  19. Ju JY, Nam HW, Yoon JC, Shin CS. (1994) Extractive fermentation of red pigment using Monascus sp, J101. Korea J. Appl. Microbial. Biotechnol., 22, 85-91
  20. Hiroi T, Shima T, Isobe A, Kimura S. (1975) Studies on the structure of two pigment obtained from Monascus sp. J. Jpn. Soc. Food Nutr., 28, 497-502
  21. Lin CF, Suen SJT. (1973) Isolation of hyperpigment productive mutants of Monascus sp. F-2. J. Ferment. Technol., 51, 757-759
  22. Tsukioka MT, Suzuki HT, Kono T. (1986) Pigment production by mutants of Monascus anka (Studies on alcoholic beverage production using genus Monascus, Part I. Nippon Nogeikagaku Kaishi, 60, 451-455 https://doi.org/10.1271/nogeikagaku1924.60.451
  23. Choi CS, Jeon CP, Lee JB, Lee OS, Rhee C.H, Kwon GS. (2006) Optimal culture conditions for production of yellow pigments from Monascus purpureus in liquid culture. Korean J. Food Preserv., 13, 192-197
  24. Su YC, Wang JJ, Lin TT, Pan TM. (2003) Production of the secondary metabolites $\gamma$-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol., 30, 41-46 https://doi.org/10.1007/s10295-002-0001-5
  25. Blanc PJ, Loret MO, Goma G. (1995) Production of citrinin by various species of Monascus. Biotech. Lett., 17, 291-294 https://doi.org/10.1007/BF01190639
  26. Martikova L, Juzlova P, Vesely D. (1995) Biological activity of polypeptide pigments produced by the fungus Monascus. J. Appl. Bacteriol., 79, 609-616 https://doi.org/10.1111/j.1365-2672.1995.tb00944.x
  27. Fink-Gremmels J, Dresel J, Leistner L. (1991) Use of Monascus extracts as an alternative to nitrite in eat products. Fleischwirtsch, 71, 329-331
  28. Park MZ. (2001) Study on soy sauce preparation fermented by Monascus pliosus KCCM 60084. Dept. of Food Sci. and Technol. The Graduate School in Gatholic University of Daegu, Kyungsan, Korea
  29. Ryu BH, Ahn MK, Park JO. (1995) Production of cholesterol inhbitor, monacolin produced from Monascus pilosus M015. J. Korean Soc. Food Nutr., 24, 92-97
  30. Youn UK, Kim YH, Kim SD. (2003) Pigment and monacolin K content of beni-koji fermented with soybean curd residue. Korean J. Food Preserv., 10, 360-364
  31. Kang SG, Jung ST. (1995) Pigment production and color difference of liquid Beni-koji under submerged cultural conditions. Korean J. Appl. Microbiol. Biotechnol., 23, 472-478
  32. Dewanto V, Wu X, Adom KK, Liu RH. (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50, 3010-3014 https://doi.org/10.1021/jf0115589
  33. Prieto P, Pineda M, Aguilar M. (1999) Spectrophotometric quantitation of antioxidant capactity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 269, 337-341 https://doi.org/10.1006/abio.1999.4019
  34. Roman K, Vladimir K. (1993) Determination of Lovastatin (mevinolin) and mevinolinic acid in fermentation liquids. J. Chromatogr., 630, 415-417 https://doi.org/10.1016/0021-9673(93)80480-V
  35. Reinhard H, Zimmerli B. (1999) Reversed-phase liquid chromatographic behavior of the mycotoxins citrinin and ochratoxin A. J. Chromatogr., 862, 147-159 https://doi.org/10.1016/S0021-9673(99)00929-2
  36. Blois MS. (1958) Antioxidant determinations by the use of stable free radical. Nature., 181, 1199-1120 https://doi.org/10.1038/1811199a0
  37. Saeedeh AD, Asna U. (2007) Antioxidant properties of various solvent extracts of mulberry(Morus indica L.) leaves. Food Chem., 102, 1233-1240 https://doi.org/10.1016/j.foodchem.2006.07.013
  38. Marklund S, Marklund G. (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biol. Chem., 47, 468-474
  39. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem., 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  40. Kim DS, Ahn BW, Yeum DM, Lee DW, Kim ST, Park YH. (1987) Degradation of carcinogenic nitrosamine formation factor by natural food components. Bull. Korean Fish. Soc., 20, 463-468
  41. Buege JA, Aust SD. (1978) Microsomal lipid peroxidation. Meth. Enzymol., 52, 302-310 https://doi.org/10.1016/S0076-6879(78)52032-6
  42. Conner DE, Beuchat LR. (1984) Sensitivity of heat-stressed yeasts to essential oils of plants. Appl. Environ. Microbiol., 47, 229-233
  43. Yoon EK, Kim MJ, Kim SD. (2002) Growth and pigment formation of genus Monascus on medium compositions. Korean J. Food Preserv., 9, 425-428
  44. Fosell ADG, Robertson A, Whelly WB. (1956) Monascorubramine. J. Chem. Soc. Spec. Publ., 5, 27-34
  45. Endo A. (1985) Trends in Monascus koji and Monascus strains. Hako To Kogyo, 43, 544-552
  46. Juzlova P, Martinkova L, Kren V. (1996) Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol., 16, 16-170
  47. Manzoni M, Rollini M. (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol., 58, 555-564 https://doi.org/10.1007/s00253-002-0932-9
  48. Duval B, Shetty K. (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem., 25, 361-377 https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  49. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. (2005) Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J. Food Sci. Technol., 37, 233-240
  50. Middleton EJ, Kandaswami C. (1994) Potential health promoting properties of citrus flavonoids. Food Technol., 48, 115-119
  51. Choi CH, Song ES, Kim SJ, Kang MH. (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J. Food Sci. Technol., 35, 1216-1220
  52. Torel J, Gillard J, Gillard P. (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem., 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  53. Kang YH, Park YK, Oh SR, Moon KD. (1995) Studies on the physiological functionality of pine needle and mugwort extracts. Korean J. Food Sci. Technol., 27, 978-984
  54. Osawa T. (1994) Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p. 241-251
  55. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S. (2002) Buckwheat the source of antioxidant activity in functional foods. Food Res. Int., 35, 207-211 https://doi.org/10.1016/S0963-9969(01)00185-5
  56. Im MJ, Manson PN, Bulkley GB, Hoopes JE. (1985) Effects of superoxide dismutase and allopurinol in survival of acute island skin flaps. Ann. Surg., 201, 357-359 https://doi.org/10.1097/00000658-198503000-00018
  57. Kitani K, Minami C, Amamoto T, Kanai S, Ivy GO, Carrillo MC. (2002) Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann. NY Acad. Sci., 959, 295-307 https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  58. Shin SR, Hong JY, Nam HS, Yoon KY, Kim KS. (2006) Anti-oxidative effects of extracts of korean herbal materials. J. Korean Soc. Food Sci. Nutr., 35, 187-191 https://doi.org/10.3746/jkfn.2006.35.2.187
  59. Na GM, Han HS, Ye SH, Kim HK. (2004) Physiological activity of medicinal plant extracts. Korean J. Food Preserv., 11, 388-393
  60. Hur SJ, Ye BW, Lee JL, Ha YL, Park GB, Joo ST. (2004) Effect of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage. Meat Sci., 66, 771-775 https://doi.org/10.1016/S0309-1740(03)00104-9
  61. Chung JH, Ho JS, Moon CK. (1990) Direct interaction of streptozotocin with TBA(thiobarbituric acid) in lipid peroxidation analysis. Korean J. Food Hyg., 5, 237-242
  62. Ryu CS, Kim YB, Hwang HJ. (1995) Antimicrobial effect of Monascus strain isolated from An-Khak. J. Food Hyg. Safety, 10, 271-277
  63. Mah JH, Hwang HJ. (1996) Screening of Monascus strain for antimicrobial activity and effect of change of nutrition and incubation conditions on antimicrobial activity. J. Korean Soc. Food Sci. Nutr., 25, 1080-1086
  64. Nozaki H, Date S, Kondo H, Kiyohara H, Takaoka D, Tada T, Nakayama M. (1991) Ankalactone, a new ${\alpha},{\beta}$ -unsaturated $\gamma$-lactone from Monascus anka. Agric. Biol. Chem., 55, 899-900 https://doi.org/10.1271/bbb1961.55.899
  65. Martikova L, Juzlova P, Vesely D. (1995) Biological activity of polypeptide pigments produced by the fungus Monascus. J. Appl. Bacteriol., 68, 307-318
  66. Lim CM, Kyung KH, Yoo YJ. (1987) Antimicrobial effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Korean J. Food Sci. Technol., 19, 54-60