Microstructural Study of Creep-Fatigue Crack Propagation for Sn-3.0Ag-0.5Cu Lead-Free Solder

  • Woo, Tae-Wuk (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Sakane, Masao (Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University) ;
  • Kobayashi, Kaoru (Advanced Packaging Laboratory, Kyocera SLC Technologies Corporation) ;
  • Park, Hyun-Chul (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Kim, Kwang-Soo (Department of Mechanical Engineering, Pohang University of Science and Technology)
  • Received : 2010.08.27
  • Accepted : 2010.09.14
  • Published : 2010.09.30

Abstract

Crack propagation mechanisms of Sn-3.0Ag-0.5Cu solder were studied in strain controlled push-pull creepfatigue conditions using the fast-fast (pp) and the slow-fast (cp) strain waveforms at 313 K. Transgranular cracking was found in the pp strain waveform which led to the cycle-dominant crack propagation and intergranular cracking in the cp strain waveform that led to the time-dominant crack propagation. The time-dominant crack propagation rate was faster than the cycle-dominant crack propagation rate when compared with J-integral range which resulted from the creep damage at the crack tip in the cp strain waveform. Clear recrystallization around the crack was found in the pp and the cp strain waveforms, but the recrystallized grain size in the cp strain waveform was smaller than that in the pp strain waveform. The cycle-dominant crack propagated in the normal direction to the specimen axis macroscopically, but the time-dominant crack propagated in the shear direction which was discussed in relation with shear micro cracks formed at the crack tip.

Keywords

References

  1. R. G. Ross Jr., L. C. Wen, G. R. Mon and E. Jetter, "Solder Creep-Fatigue Interactions with Flexible Leaded Parts", J. Electron. Packag., 113, 185 (1992).
  2. R. M. V. Pidaparti and X. Song, "Fatigue Crack Propagation Life Analysis of Solder Joints under Thermal Cyclic Loading", Theo. Appl. Fract. Mech., 24, 157 (1996). https://doi.org/10.1016/0167-8442(95)00039-9
  3. J. Zhao, Y. Mutoh, Y. Miyashita and S. L. Mannan, "Fatigue Crack-Growth Behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders", J. Electron. Mater., 31(8), 879 (2002). https://doi.org/10.1007/s11664-002-0199-z
  4. C. Kanchanomai, Y. Miyashita and Y. Mutoh, "Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders", J. Electron. Mater., 31(5), 456 (2002). https://doi.org/10.1007/s11664-002-0100-0
  5. T. W. Woo, H. C. Park, M. Sakane and K. Kobayashi, "Creep- Fatigue Crack Propagation Behavior of Sn-3.0Ag-0.5Cu Lead-Free Solder", Proc. Asian Pacific Conference for Materials and Mechanics (APCMM), Yokohama, a7, The Japan Society of Mechanical Engineers (JSME) (2009).
  6. M. Nozaki, M. Sakane, Y. Tsukada and H. Nishimura, "Creep-Fatigue Life Evaluation for Sn-3.5Ag Solder", J. Eng. Mater. Tech., 128, 142 (2006). https://doi.org/10.1115/1.2172273
  7. M. Nozaki, M. Sakane and Y. Tsukada, "Crack Propagation Behavior of Sn-3.5Ag Solder in Low Cycle Fatigue", Int. J. Fatigue, 30, 1729 (2008). https://doi.org/10.1016/j.ijfatigue.2008.02.010
  8. J. K. Choi, J. H. Park, H. S. Park and Y. S. Ahn, "Reliability Appraisal Standard for Lead-free Solder Bar (in Korean)", J. Microelectron. Packag. Soc., 14(2), 23 (2007).
  9. K. S. Chae, J. S. Min, I. J. Kim and I. J. Cho, "Practical Application of Sn-3.0Ag-0.5Cu Lead Free Solder in Electronic Production", J. Microelectron. Packag. Soc., 12(1), 65 (2005).
  10. D. R. Frear, H. Morgan, S. Burchett and J. Lau, "The Mechanics of Solder Alloy Interconnects", Van Nostrand Reinhold, New York (1994).
  11. H. Nose, M. Sakane, M. Yamashita and K. Shiokawa, "Crack Initiation and Propagation Behavior of Three Types of Solders in Torsion Low Cycle Fatigue (in Japanese)", Trans. Jpn. Soc. Mech. Eng.: A, 69(684), 1222 (2003). https://doi.org/10.1299/kikaia.69.1222
  12. C. Kanchanomai, Y. Miyashita and Y. Mutoh, "Strain-Rate Effects on Low Cycle Fatigue Mechanism of Eutectic Sn-Pb Solder", Int. J. Fatigue, 24, 987 (2002). https://doi.org/10.1016/S0142-1123(02)00011-7
  13. X. Q. Shi, H. I. J. Pang, W. Zhou and Z. P. Wang, "Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy", Int. J. Fatigue, 22, 217 (2000). https://doi.org/10.1016/S0142-1123(99)00124-3
  14. C. K. Lin and C. M. Huang, "Effects of Strain Ratio and Tensile Hold Time on Low-Cycle Fatigue of Lead-Free Sn- 3.5Ag-0.5Cu Solder", J. Electron. Mater., 35(2), 292 (2006). https://doi.org/10.1007/BF02692449
  15. M. L. Huang, C. M. L. Wu and L. Wang, "Creep Resistance of Tin-based Lead-Free Solder Alloys", J. Electron. Mater., 34(11), 1373 (2005). https://doi.org/10.1007/s11664-005-0193-3
  16. H. G. Song, J. W. Morris Jr. and F. Hua, "The Creep Properties of Lead-Free Solder Joints", JOM, 54, 30 (2002).
  17. J. Yu, K. O. Lee and D. K. Joo, "Effects of Microstructure on the Creep Properties of the Lead-Free Sn-Based Solders (in Korean)", J. Microelectron. Packag. Soc., 10(3), 29 (2003).
  18. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock and S. Wong, "Microstructure Changes in Sn-3.5Ag Solder Alloy during Creep", J. Electron. Mater., 27(12), 1367 (1998). https://doi.org/10.1007/s11664-998-0099-y
  19. JSMS Committee on High Temperature Strength of Materials ed., Low Cycle Fatigue Standard for Solder Testing (in Japanese), The Japan Society of Material Science, Tokyo, Japan (2000).
  20. Wikipedia, Wikipedia Foundation. Inc. June (2010) from http://www.wikipedia.org/wiki/Surface_roughness
  21. T. W. Woo, M. Sakane, K. Kobayashi and H. C. Park, "The Studies on the Creep-Fatigue Crack Growth Behavior of Sn- 3.0Ag-0.5Cu Solder", Proc. Korean Society of Mechanical Engineers Fall Conference, Pyeongchang, 354, The Koran Society of Mechanical Engineers (KSME) (2009).
  22. S. Taira, R. Ohtani, T. Kitamura and K. Yamada, "J-Integral Approach to Crack Propagation under Combined Creep and Fatigue Condition", J. Soc. Mater. Sci., Jpn, 28(308), 414 (1979). https://doi.org/10.2472/jsms.28.414
  23. V. Raman and T. C. Reiley, "Dynamic Recrystallization during High Temperature Fatigue", Scripta Metall., 20, 1343 (1986). https://doi.org/10.1016/0036-9748(86)90092-X
  24. Z. Mei, J. W. Morris Jr., M. C. Shine and T. S. E. Summers, "Effects of Cooling Rate on Mechanical Properties of Near- Eutectic Tin-Lead Solder Joints", J. Electron. Mater., 20, 599 (1991). https://doi.org/10.1007/BF02669524
  25. M. Sakane, M. Ohnami and N. Hamada, "Biaxial Low Cycle Fatigue for Notched, Cracked and Smooth Specimens at High Temperatures", J. Eng. Mater. Tech., 110, 48 (1988). https://doi.org/10.1115/1.3226009