Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission

전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능

  • Park, Joung-Man (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Jang, Jung-Hoon (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Wang, Zuo-Jia (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Kwon, Dong-Jun (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Park, Jong-Kyu ;
  • Lee, Woo-Il
  • 박종만 (경상대학교 나노.신소재 공학부) ;
  • 장정훈 (경상대학교 나노.신소재 공학부) ;
  • 왕작가 (경상대학교 나노.신소재 공학부) ;
  • 권동준 (경상대학교 나노.신소재 공학부) ;
  • 박종규 (국방과학연구소 제4연구부) ;
  • 이우일 (서울대학교 기계.항공공학부)
  • Received : 2010.08.01
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

탄소나노튜브-에폭시 복합재료의 미세손상에 대한 자체-감지도와 분산도와 관련되는 특성 연구가 접촉각, 전기-미세역학 시험법 및 음향방출을 통하여 수행하였다. 시편들은 미처리와 산처리된 탄소나노튜브가 첨가된 에폭시 복합재료와 순수 에폭시로 제조되었다. 상대적인 분산도는 부피 전기저항도와 그 표준편차로 평가하였다. 응력전달을 나타내는 겉보기 탄성율은 미처리 탄소나노튜브 복합재료보다 산처리된 경우가 크게 나타났다. 단일 탄소섬유/탄소나노튜브-에폭시 복합재료는 부가한 반복 하중에 대해서 접촉저항도의 변화로 잘 감지되었다 섬유 풀-아웃 시험에서 단일 탄소섬유와 탄소나노튜브-에폭시간의 계면접착강도는 순수 에폭시의 경우보다 작았다. 음향방출과 함께 전기저항측정을 통한 미세파손 감지는, 전도성 있는 탄소나노튜브-에폭시 복합재료에서는 단일 탄소섬유 파손에 대한 단계적인 전기저항도의 증대를 보여 주었으나, 순수 에폭시의 경우는 첫번째 탄소섬유의 파단의 경우 바로 저항이 무한대로 증대함을 보여주었다. 첨가한 탄소나노튜브의 미세계면 손상으로 인하여, 음향방출 발생이 나노복합재료가 순수 에폭시에 비하여 훨씬 증대하였다.

Keywords

Acknowledgement

Supported by : 국방과학연구소(ADD)

References

  1. D. Qian E. C. Dickey, R. Andrews and T. Rantell, "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites," Applied Physics Letter, Vol. 76, pp. 2868-2880 (2000) https://doi.org/10.1063/1.126500
  2. J. Sandlera, M. S. P. Shaffera, T. Prasseb, W. Bauhoferb, K. Schultea and A. H. Windle, "Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties," Polymer, Vol. 40, pp. 5967-5971 (1991)
  3. C. L. Xu, B. Q. Wei, R. Z. Ma, J. liang, X. K. Ma and D. H. Wu, "Fabrication of aluminum - carbon nanotube composites and their electrical properties," Carbon, Vol. 37, pp. 855-868 (1999) https://doi.org/10.1016/S0008-6223(98)00285-1
  4. S. C. Chowdhury, T. Okabe, "Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method," Composite: Part A, Vol. 38, pp. 747-754 (2007) https://doi.org/10.1016/j.compositesa.2006.09.011
  5. D. D. L. Chung, "Comparison of submicrondiameter carbon filaments and conventional carbon fibers as fillers in composite materials," Carbon, Vol 39, pp. 1119-1125 (2001) https://doi.org/10.1016/S0008-6223(00)00314-6
  6. J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu and et al., "Dissolution of full-length single-walled carbon nanotubes," Journal of Physical Chemistry: B, Vol 105, pp. 2525-2528 (2001) https://doi.org/10.1021/jp002596i
  7. Z. Wei, C. Song and P. E. Pehrsson, "Water-soluble and optically pH sensitive single-walled carbon nanotubes from surface modification," Journal of American Chemical. Society, Vol. 124, pp. 12418-12419 (2002) https://doi.org/10.1021/ja027861n
  8. J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku and E. V. Barrera, "Improving the Dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization,' Nano Letter, Vol. 3, pp. 1107-1113 (2003) https://doi.org/10.1021/nl0342489
  9. G. Zhang, S. Sun, D. Yang, J. P. Dodelet and E. Sacher, "The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3treatment," Carbon, Vol. 46, pp. 196-205 (2008) https://doi.org/10.1016/j.carbon.2007.11.002
  10. M. A. Hamom, H. Hui, P. Bhowmik, S. Nitogi, B. Zhao, H. M. E. Itkis and et al., "End-group and defect analysis of soluble single-wassed carbon nanotubes," Chemical Physics Letter, Vol. 347, pp. 8-12 (2001) https://doi.org/10.1016/S0009-2614(01)01035-1
  11. J. Liu, G. Rinzer, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul and et al., "Fullerene Pipes," Science, Vol. 280, pp. 1253-1256 (1998) https://doi.org/10.1126/science.280.5367.1253
  12. M. A. Hamon, H. HUi, P. Bhowmik, H. M. E. Itkis and R. C. Haddon, "Esterfunctionalized soluble single-walled carbon nanotubes," Applied Physics: A, Vol. 74, pp. 333-338 (2002) https://doi.org/10.1007/s003390201281
  13. H. Nishikiori, N. Tanaka, T. Tanigaki, M. Endo and T. Fujii, "In situ probing of acidic groups on acid-treated carbon nanofibers using 1-aminopyrene," Journal of Photochemical Photobiology: A: Chemistry, Vol. 193, pp. 161-165 (2008) https://doi.org/10.1016/j.jphotochem.2007.06.021
  14. J. M. Park, D. S. Kim and S. R. Kim, "Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibersjpoly-L-lactide composites using micromechanical and test and nondestructive acoustic emission," Composites Science and Technology, Vol. 63, pp. 403-419 (2003) https://doi.org/10.1016/S0266-3538(02)00212-9
  15. J. M. Park, D. S. Kim and S. R. Kim, "Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly(p-dioxanone) fiber/poly (L-Iactide) composites by micromechanical test and surface wettability," Composites Science and Technology, Vol. 64, pp. 847-860 (2004) https://doi.org/10.1016/j.compscitech.2003.09.009
  16. P. M. Ajayan, L. S. Schadler, S. C. Giannaris and A. Rubio, "Single-walled carbon nanotube-polyrner composites: strength and weakness," Advanced Materials. Vol. 12, pp. 750-753 (2000) https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  17. J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon and K. L. DeVries, "Inherent sensing and interfacial evaluation of carbon nanofiber and nanotnbe /epoxy composites using electrical resistance measurement and micromechanical technique," Composites: Part B, Vol. 38, pp. 847-861 (2007) https://doi.org/10.1016/j.compositesb.2006.12.004
  18. J. M. Park, S. I. Lee, K. L DeVries, "Nondestructive evaluation of surface modified single-carbon fiber reinforced epoxy composites by electrical resistivity measurement," Composites: Part B, Vol. 13, pp. 612-626 (2006)
  19. S. Wang, S. L Lee, D. D. L. Chung and J. M. Park, "Load transfer from fiber to polymer matrix, studied by measuring the apparent elastic modulus of carbon fiber embedded in epoxy," Composites Interface Letter, Vol. 8(6), pp. 435-442 (2001) https://doi.org/10.1163/156855401753424479
  20. D. K. Owen and R. C. Wendth, "Estimation of the surface free energy of polymer," Journal of Applied Polymer Science, Vol. 13, pp. 1741-1747 (1969) https://doi.org/10.1002/app.1969.070130815
  21. J. M. Park, J. W. Kong, J. W. Kim and D. J. Yoon, "Interfacial evaluation at electrodeposited single carbon fiber/epoxy composites by fiber fracture source location using fragmentation and acoustic emission," Composites Science and Technology, Vol. 64, pp. 983-999 (2004) https://doi.org/10.1016/j.compscitech.2003.08.006
  22. J. M. Park, P. G. Kim, J. H. Jang, Z. J. Wang, W. I. Lee, J. G. Park, "Self-sensing and dispersion evaluation of single carbon fiber/carbon nanotube (CNT)-epoxy composites using electro-micromechanical technique and nondestructive acoustic emission," Composites: Part B, Vol. 39, pp. 1170-1182 (2008) https://doi.org/10.1016/j.compositesb.2008.03.004