DOI QR코드

DOI QR Code

Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate

CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교

  • Paik, Jung-Ho (Div. of Materials Science and Engineering, Hanyang Univ.) ;
  • Han, Won-Kyu (Div. of Materials Science and Engineering, Hanyang Univ.) ;
  • Kang, Sung-Goon (Div. of Materials Science and Engineering, Hanyang Univ.)
  • 백정호 (한양대학교 신소재공학과) ;
  • 한원규 (한양대학교 신소재공학과) ;
  • 강성군 (한양대학교 신소재공학과)
  • Published : 2010.04.27

Abstract

Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

Keywords

References

  1. J. R. Selman, Fuel Cells; Trends in Research and Application, Electric Power Research Institute, CA (1986).
  2. D. Linden, Handbook of Batteries and Fuel Cells, McGraw-Hill, NY (1984).
  3. D. P. Davies, P. L. Adcock, M. T. Turpin and S. J. Rowen,J. Appl. Electrochem. 30, 101 (2001). https://doi.org/10.1023/A:1003831406406
  4. H. Tawfik, Y. Hung and D. Mahajan, J. Power Sources,163, 755 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.088
  5. A. Hermann, T. Chaudhuri and P. Spagnol, Int. J. Hydrog. Energ., 30, 1297 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.016
  6. S. -J. Lee, J. -J. Lai and C. -H. Huang, J. Power Sources,145, 362 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.082
  7. D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowen,J. Appl. Electrochem., 30, 101 (2000). https://doi.org/10.1023/A:1003831406406
  8. P. L. Hentall, J. B. Lakeman, G. Mepsted, P. L. Adcockand J. M. Moore, J. Power Sources, 80, 235 (1999). https://doi.org/10.1016/S0378-7753(98)00264-X
  9. J. Jayaraj, Y. C. Kim, K. B. Kim, H. K. Seok and E.Fleury, Sci. Technol. Adv. Mater., 6, 282 (2005). https://doi.org/10.1016/j.stam.2005.02.019
  10. B. Wu, Y. Fu, J. Xu, G. Lin and M. Hou, J. Power Sources,194, 976 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.029
  11. H. Wang, M. P. Brady, G. Teeter and J. A. Turner, J. Power Sources, 138, 86 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.067
  12. H. Wang, M. P. Brady, K. L. More, H. M. MeyerIIIand J. A. Turner, J. Power Sources, 138, 79 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.064
  13. D. Chu and R. Jiang, J. Power Sources, 80, 226 (1999). https://doi.org/10.1016/S0378-7753(98)00263-8
  14. K. H. Lee, S. H. Lee, J. H. Kim, Y. Y. Lee, Y. H. Kim,M. C. Kim and D. M. Wee, Int. J. Hydrog. Energ., 34,1515 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.063
  15. H. Wang, M. A. Sweikart and J. A. Turner, J. Power Sources, 115, 243 (2003). https://doi.org/10.1016/S0378-7753(03)00023-5
  16. R. F. Silva, D. Franchi, A. Masci and A. Pozio, Electrochim. Acta, 51, 3592 (2006). https://doi.org/10.1016/j.electacta.2005.10.015
  17. Y. I. Chen and J. G. Duh, Surf . Coat. Technol., 46, 371(1991). https://doi.org/10.1016/0257-8972(91)90178-Y
  18. The Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan (Washington D.C : U.S. Departmement of Energy (2005).
  19. C. Liu and A. Leyland, Surf. Coat. Tech., 141, 164 (2001). https://doi.org/10.1016/S0257-8972(01)01267-1
  20. B. Tang, M. P. Brady, H. Wang, J. A. Turner, K. L.More, D. J. Young, P. F. Tortorelli, E. A. Payzant andL. R. Walker, J. Power Sources, 174, 228 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.106
  21. E. Endoh, S. Terazono and H. Widjaja, Electrochem. Solid. St., 7, A209 (2004). https://doi.org/10.1149/1.1739314
  22. K. Teranishi, K. Kawata and S. Tsushima, Electrochem. Solid. St., 9, A475 (2006). https://doi.org/10.1149/1.2266163
  23. D. E. Curtin and R. D. Lousenberg, T. J. Henry, J. Power Sources, 131, 41 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  24. H. Tang, Z. Qi and M. Ramani, J. Power Sources, 158,1306 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.059
  25. Y. Fu, M. Hou, G. Lin, Z. Shao and B. Yi, J. Power Sources, 176, 282 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.038

Cited by

  1. A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.390