DOI QR코드

DOI QR Code

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2010.04.27

초록

Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

키워드

참고문헌

  1. Y. B. Lee, J. S. Kim, S. B. Kim, H. C. Park and K. D. Oh,Kor. J. Mater. Res., 9(1), 8 (1999) (in Korean).
  2. W. G. Fahrenholtz and G. E. Hilmas, J. Am. Ceram. Soc.,90(5), 1347 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  3. S. J. Lee and D. K. Kim, Sur. Rev. Lett., 17(3), 1 (2010). https://doi.org/10.1142/S0218625X10013540
  4. N. P Bansal, Handbook of ceramics composite, p.197,Springer, US (1997).
  5. J. Han, P. Hu, X. Zhang and S. Meng, Scripta. Mater.,57, 825 (2007). https://doi.org/10.1016/j.scriptamat.2007.07.009
  6. W. W. Wu, G. J. Zhang, Y. M. Kan and P. L. Wang, J. Am. Ceram. Soc., 91(8), 2501 (2008). https://doi.org/10.1111/j.1551-2916.2008.02507.x
  7. A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas, J. Eur. Ceram. Soc., 27, 2495 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.012
  8. S. J. Lee and D. K. Kim, Key Eng. Mater., 403, 253(2009). https://doi.org/10.4028/www.scientific.net/KEM.403.253
  9. S. N. Karlsdottir and J. W. Halloran, J. Am. Ceram. Soc.,91(1), 272 (2008).
  10. E. Opila, S. Levine and J. Lorincz, J. Mater. Sci., 39,5969 (2004). https://doi.org/10.1023/B:JMSC.0000041693.32531.d1
  11. M. M. Opeka, I. G. Talmy and J. A. Zaykoski, J. Mater. Sci., 39, 5887 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77
  12. D. Sciti, L. Silvestroni, G. Celotti and S. Guicciardi, J. Am. Ceram. Soc., 91(10), 3285 (2008). https://doi.org/10.1111/j.1551-2916.2008.02593.x
  13. A. Rezaie, W. G. Fahrenholtz and G. E. Hilmas, J. Am. Ceram. Soc., 89(10), 3240 (2006). https://doi.org/10.1111/j.1551-2916.2006.01229.x
  14. A. Bongiorno, C. J. Först, R. K. Kalia, J. Li, J. Marschall,A. Nakano, M. M. Opeka, I. G. Talmy, P. Vashishta andS. Yip, Mater. Res. Soc. Bull., 31, 410 (2006). https://doi.org/10.1557/mrs2006.103
  15. S. S. Hwang, A. L. Vasiliev and N. P. Padture, Mater. Sci. Eng. A, 464, 216 (2007). https://doi.org/10.1016/j.msea.2007.03.002
  16. M. Balat, G. Flamant, G. Male and G. Pichelin, J. Mater. Sci. 27, 697 (1992). https://doi.org/10.1007/BF02403882

피인용 문헌

  1. Promising ultra-high-temperature ceramic materials for aerospace applications vol.58, pp.14, 2013, https://doi.org/10.1134/S0036023613140039