Noninformative priors for the common location parameter in half-t distributions

  • Kang, Sang-Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal-Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo-Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2010.10.04
  • Accepted : 2010.11.22
  • Published : 2010.11.30

Abstract

In this paper, we want to develop objective priors for the common location parameter in two half-t distributions with unequal scale parameters. The half-t distribution is a non-regular class of distribution. One can not develop the reference prior by using the algorithm of Berger of Bernardo (1989). Specially, we derive the reference priors and prove the propriety of joint posterior distribution under the developed priors. Through the simulation study, we show that the proposed reference prior matches the target coverage probabilities in a frequentist sense.

Keywords

References

  1. Aigner, D. J., Lovell, C. A. K. and Schmidt, P. (1977). Formulation and estimation of stochastic frontier production models. Journal of Econometrics, 6, 21-37. https://doi.org/10.1016/0304-4076(77)90052-5
  2. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.2307/2289864
  3. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, J.M. Bernardo et al., Oxford University Press, Oxford, 35-60.
  4. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society, B, 41, 113-147.
  5. Datta, G. S. (1996). On priors providing frequentist validity for Bayesian inference for multiple parametric functions. Biometrika, 83, 287-298. https://doi.org/10.1093/biomet/83.2.287
  6. Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
  7. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society, B, 56, 397-408.
  8. Dobzhansky, T. and Wright, S. (1943). Genetics of natural populations. X. dispersion rates in drosophila pseudoobscura. Genetics, 28, 304-340.
  9. Geweke, J. (1993). Bayesian treatment of the independent Student-t linear model. Journal of Applied Econometrics, 8 Supplement, 19-40. https://doi.org/10.1002/jae.3950080504
  10. Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test, 6, 159-186. https://doi.org/10.1007/BF02564432
  11. Ghosal, S. and Samanta, T. (1995). Asymptotic behavior of Bayes estimates and posterior distributions in multiparameter nonregular cases. Mathematical Methods of Statistics, 4, 361-388.
  12. Ghosal, S. and Samanta, T. (1997). Expansion of Bayes risk for entropy loss and reference prior in nonregular cases. Statistics and Decisions, 15, 129-140.
  13. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV, J.M. Bernardo et al., Oxford University Press, Oxford, 195-210.
  14. Haberle, J. G. (1991). Strength and failure mechanisms of unidirectional carbon fibre-reinforced plastics under axial compression, Unpublished Ph.D. thesis, Imperial College, London, U.K.
  15. Kang, S. G., Kim, D. H. and Lee, W. D. (2008). Reference priors for the location parameter in the exponential distributions. Journal of the Korean Data & Information Science Society, 19, 1409-1418.
  16. Kang, S. G., Kim, D. H. and Lee, W. D. (2010). Noninformative priors for the common location parameter in half-normal distributions. Journal of the Korean Data & Information Science Society, 21, 757-764.
  17. Kim, D. H., Kang, S. G. and Lee, W. D. (2009a). An objective Bayesian analysis for multiple step stress accelerated life tests. Journal of the Korean Data & Information Science Society, 20, 601-614.
  18. Kim, D. H., Kang, S. G. and Lee, W. D. (2009b). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  19. Meeusen, W. J. and van den Broeck, J. (1977). Efficiency estimation from Cobb Douglas production functions with composed error. International Economic Review, 8, 435-444.
  20. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  21. Pewsey, A. (2002). Large-sample inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 31, 1045-1054. https://doi.org/10.1081/STA-120004901
  22. Pewsey, A. (2004). Improved likelihood based inference for the general half-normal distribution. Communications in Statistics-Theory and Methods, 33, 197-204. https://doi.org/10.1081/STA-120028370
  23. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics. Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
  24. Tancredi, A. (2002). Accounting for heavy tails in stochastic frontier models, Working paper n. 2002.16, Dipartimento di Scienze Statistiche, Universita di Padova, Italy.
  25. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  26. Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 25, 318-329.
  27. Wiper, M. P., Giron, F. J. and Pewsey, A. (2008). Objective Bayesian inference for the half-normal and half-t distributions. Communications in Statistics-Theory and Methods, 37, 3165-3185. https://doi.org/10.1080/03610920802105184