Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion

삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석

  • 김연철 (국방과학연구소 1기술연구본부 6부)
  • Received : 2010.05.31
  • Accepted : 2010.09.26
  • Published : 2010.10.30

Abstract

A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. The thermogravimetric analysis (TGA) techniques have been used to characterize the thermal decomposition constants for Arrhenius parameters. Two heterogeneous reactions involving carbon and the oxidizing species of $H_2O$ and $CO_2$ are considered and determined by Zvyagin's ablation model and kinetic constants. The moving boundary problem and mesh moving are solved by remeshing-rezoning method in MSC-Marc-ATAS program. The difference between the calculated and experimental value of char and ablation thickness is up to 20%. For the performance prediction of thermal protection systems, this method will be integrated with a three-dimensional finite-element thermal and structure analysis code through the real time sensing of in-depth temperature and heat flux.

고체 추진기관 노즐의 2차원 열반응 및 삭마 해석 코드를 활용하여 노즐 부품의 숯 및 삭마현상을 연구하였다. Arrhenius 식을 이용한 내부 열분해 모델 상수는 TGA(열중량분석기) 실험으로 얻었다. 탄소와 $H_2O$, $CO_2$의 산화반응에 의한 화학적 삭마는 Zvyagin이 제안한 삭마모델 과 반응속도 상수를 이용하여 해석을 수행하였다. 삭마에 의한 경계조건 및 격자 이동은 상용해석 프로그램인 MSC-Marc-ATAS에서 적용되는 Rezoning-remeshing 기법을 사용하였다. 해석된 숯 및 삭마 두께는 연소시험 결과 값과 최대 20% 오차를 보였다. 향후 열방호 시스템의 성능을 모사하기 위하여 내부 온도 및 열유속을 실시간 측정하면 3차원 FEM 통합 열구조 해석에 적용될 것으로 기대된다.

Keywords

References

  1. Ted B. Wertheimer, Fabrice Laturelle, "Thermal Stress Analysis of TPS using Marc", TFAWS 2008 Program, 2008
  2. M. E. Boyle and R. F. Cozzens, "The effect of high heating rate on pyrolysis of carbon/phenolic composites", AD-A200320, 1988
  3. J.B.Henderson and M. R. Tant,.. Determination of kinetic parameters for the thermal decomposition of phenolic ablative materials by a multiple heating rate method," Vol. 44, Thermochimica, 1981, pp.253-264 https://doi.org/10.1016/0040-6031(81)85019-8
  4. Sergey Vyazovkin., "A unified approach to kinetic processing of nonisothermal data", International Journal of Chemical Kinetics, Vol. 28, 1996, pp.95-101 https://doi.org/10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G
  5. 김연철, "로켓노즐용 내열재의 열반응 상수 측정기법 연구", 국방과학연구소, MSDC-421-990446, 1999
  6. Boyarintsev,V. I. ; Zvyagin,Yu, V., "The Ablation of Graphite in the Turbulent Flow of a Reacting Gas", 1972
  7. Fabrice Laturelle, Ted B. Wertheimer, "Thermal Decomposition Analysis of Rocket Motors and Other thremal Protection Systems using MSC-Marc-ATAS", Virtual Product Development Conference(Oct. 13-15, 2003)
  8. MSC.Software Corporation, User Subroutine AND Special Routines, Vol. D, 2008
  9. MSC.Software Corporation, Theory AND User Information, Vol. A, 2008
  10. Aerotherm, User's Manual Aerotherm Charring Material Thermal Response AND Ablation Program, 1970
  11. Aerotherm, User's Manual Aerotherm Chemical Equilibrium(ACE) Computer Program, 1969
  12. Bonnie J. McBride & Sanford Gordon, Lewis Research Center, NASA, Computer Program for Calculation of Complex Chemical Equilibrium Compositions AND Applications (NASA-RP1311), 1996
  13. A.S. Koroteyev, "Gas Dynamics and Thermophysical Processes in Solid Rocket Propulsions", MOSCOW Mashinostroenie, 2004
  14. Bartz, D. R., A Simple Equation for Rapid Estimation of Rocket Nozzle Convective HeatTransfer Coefficients, Jet Propulsion, Vol. 27, No. 1, pp. 49-51, January 1957 https://doi.org/10.2514/8.12572
  15. E. Y. WONG, SOLID ROCKET NOZZLE DESIGN SUMMARY, Aerojet-General Corporation, AIAA Paper No. 60-655
  16. Keiichi ISHIKO and Torn SHIMADA,Implicit LES of Compressible Turbulent Flow over a Backward Facing Step in the nozzle of solid rocket motor, AIAA 2010-923, 2010.
  17. KOBAYASHI Hideo, TERADA, Hiroyuki, "Failed Launching of H-II A Rocket #6, Failure Knowledge Database /100 Selected Cases", Nov. 29th, 2003, Pacific Ocean, Off Tanegashima Island, Kagoshima