Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin

수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화

  • 정건희 (고려대학교 방재과학기술연구센터) ;
  • 류관형 (고려대학교 건축 사회환경공학부) ;
  • 김중훈 (고려대학교 건축 사회환경공학부)
  • Published : 2010.02.28

Abstract

Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.

미래의 기후조건과 생활패턴의 불확실성으로 인해 미래용수수요 또한 불확실성을 가지며, 이는 충분한 용수공급을 목적으로 하는 댐 운영에 어려움을 초래한다. 따라서 가용 수자원을 최대한 활용하여 충분한 용수분배를 하는 동시에, 홍수와 가뭄에 대한 대비까지 가능한 댐의 운영은 매우 중요하다. 본 연구에서는 미래의 불확실한 용수수요량을 정확히 알지 못하는 상태에서 저수지의 운영을 통한 저류량을 1단계에서 결정하고, 2단계에서 용수수요에 따른 용수공급량과 하천유지유량을 결정하기 위한 최적화 모형을 2단계 추계학적 선형계획법을 이용하여 구축하고, 목표저류량과 실제 저류량의 차이, 용수공급과 하천유지유량의 부족량을 최소화하기 위한 저수지 운영 규칙을 최적화하였다. 또한 가뭄시 보다 현실적이고 효율적인 저수지 운영을 위해 댐저류량에 따라 댐 계획방류량을 일정비율 줄여주는 Hedging Rule을 사용하여 모형의 적절성과 적용성을 향상시켰다. 제안된 모형은 한강수계의 댐들 중 다목적댐인 충주, 횡성, 소양강 댐과 용수전용댐인 광동 댐, 그리고 발전용 댐이지만 비교적 큰 저류용량을 가진 화천 댐을 연계 운영 대상으로 하여, 미래 용수수요량 시나리오를 고려한 최적화를 실시하였다. 그 결과 모든 시나리오에서 생공용수, 농업용수, 하천유지용수 공급량을 대부분 만족시킬 수 있었고, 댐의 저류량 역시 갈수기 용수공급에 대비하여 홍수기인 6월 말에서 9월 중순에 저류량을 확보하면서도 홍수피해저감까지 고려하는 운영이 가능하였다. 이는 다목적 댐들의 연계운영을 위한 저수지 운영규칙결정에 매우 중요한 지표가 될 수 있을 것으로 판단된다.

Keywords

References

  1. 건설교통부 (2006). 수자원장기종합계획.
  2. 국토해양부 (2009). 작년수준 가뭄에도 댐 용수공급 문제없다. 보도자료, 2009년 10월 5일
  3. 김승권, 박영준 (1998). 댐군의 연계운영을 위한 수학적 모형. 한국수자원학회논문집, 제31권, 제6호, pp. 779-793.
  4. 류관형, 정건희, 이정호, 김중훈 (2009). Hedging Rule을 이용한 댐 연계 운영 최적화: 한강수계 사례연구. 한국수자원학회논문집, 제42권, 제8호, pp. 643-657. https://doi.org/10.3741/JKWRA.2009.42.8.643
  5. 음형일, 김영오 (2007).ìSampling SDP와 Hedging Rule을 결합한 가뭄대비 최적운영률. 2007 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 1368-1371.
  6. 이용대, 김승권, 고익환 (2005). 저수지군 연계운영을 위한 추계학적 선형 계획 모형. 2005 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 262-265.
  7. 이용대, 김승권, 김재희 (2004). 저수지군 연계운영을 위한 표본추계학적 선형 계획 모형. 2004 대한산업공학회/한국경영과학회 춘계학술대회 논문집, 대한산업공학회/한국경영과학회, SB6, pp. 10-13
  8. 한국수자원공사 (2008). 댐운영실무편람.
  9. Alshaikh, A. A. and Taher, S. (1995). Optimal design of irrigation canal network under uncertainty using response surface method, Water International 20, IWRA, pp. 155-162. https://doi.org/10.1080/02508069508686468
  10. Barros, M.T., Zambon, R.C., Delgado, D.M., Barbosa, P.S.F., and Yeh, W. W.-G. (2008). Planning and operation of large-scale water distribution systems with preemptive priorities, Journal of Water Resources Planning and Management, Vol. 134, No. 3, pp. 247-256. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(247)
  11. Bayazit, M. and Unal, E. (1990). Effects of hedging on reservoir performance, Water Resources Research, Vol. 26, No. 4, pp. 713-719. https://doi.org/10.1029/WR026i004p00713
  12. Bower, B. T., M. M. Hufschmidt, and W. W. Reedy (1962), Operating procedures: Their role in the design of water-resources systems by simulation analyses, in Design of Water-Resource Systems, edited by A. Maass et al., Harvard Univ. Press, Cambridge, Mass., pp. 443-458.
  13. Butcher, William S. (2007). Stochastic dynamic programming for optimum reservoir operation, Journal of the American Water Resources Association, Vol. 7 No. 1, pp. 115 -123.
  14. Can, E.K., and Houck, M.H. (1984). Real-time reservoir operations by goal programming, Journal of Water Resources Planning and Management, Vol. 110, No. 3, pp. 297-309. https://doi.org/10.1061/(ASCE)0733-9496(1984)110:3(297)
  15. Cancelliere, A., Ancarani, A. and Rossi, G. (1998). Susceptibility of water supply reservoirs to drought conditions, Journal of Water Resources Planning and Management, Vol. 3, No. 2, pp. 140-148.
  16. Draper, A. J., and J. R. Lund (2004). Optimal hedging and carryover storage value, Journal of Water Resources Planning and Management, Vol. 130, No. 1, pp. 83-87. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83)
  17. Faber, B. A., and Stedinger, J.R. (2001). Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts, Journal of Hydrology, Vol. 249, No. 1-4, pp. 113-133. https://doi.org/10.1016/S0022-1694(01)00419-X
  18. Gate, T. K. and Alshaikh, A. A. (1993). Stochastic design of hydraulic structures in irrigation canal networks, Journal of Irrigation and Drainage Engineering, Vol. 119, No. 2, pp. 346-363. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(346)
  19. Gate, T. K., Alshaikh, A. A., Ahmed, S. I. and Molden, D. J. (1992). Optimal irrigation delivery system design under uncertainty, Journal of Irrigation and Drainage Engineering, Vol. 118, No. 3, pp. 433-449. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:3(433)
  20. Hashimoto, T., Stedinger, J. R. and Loucks, D. P. (1982). Reliability, resiliency and vulnerability criteria for water resources system performance evaluation, Water Resources Research, Vol. 18, No. 1, pp. 14-20. https://doi.org/10.1029/WR018i001p00014
  21. Karamouz, M., and Houck, M.H. (1982). Annual and monthly reservoir operating rules generated by deterministic optimization, Water Resources Research, Vol. 18, No. 5, pp. 1337-1344. https://doi.org/10.1029/WR018i005p01337
  22. Karamouz, Mohammad and Mousavi, Seyed Jamshid (2007). Uncertainty based operation of large scale reservoir systems: Dezand Karoon experience, Journal of the American Water Resources Association, Vo. 39, No. 4, pp. 961-975.
  23. Karamouz, M., and Vasiliadis, H. V. (1992). Bayesian stochastic optimization of reservoir operation using uncertain forecasts, Water Resources Research, Vol. 28, No. 5, pp. 1221-1232. https://doi.org/10.1029/92WR00103
  24. Kelman, J., Stedinger,J.R., Cooper, L.A., Hsu,E. and Yuan S. Q.(1990), Sampling Stochastic Dynamic programming Applied to Reservoir Operation, Water Resources Research, Vol. 26, No. 2, pp. 447-454. https://doi.org/10.1029/WR026i003p00447
  25. Klemes, V. (1977). Value of information in reservoir optimization, Water Resources Research, Vol. 13, No. 5, pp. 850-857.
  26. Kracman, D. R., McKinney, D. C., Watkins, D.W. Jr and Lasdon, L. S. (2006). Stochastic optimization of the Highland Lakes System in Texas, Journal of Water Resources Planning and Management, Vol. 132, No. 2, pp. 62-70. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:2(62)
  27. Lee, Yongdae, Kim, Sheung-Kown and Ko, Ick Hwan (2008). Multistage stochastic linear programming model for daily coordinated multi-reservoir operation, Journal of Hydroinformatics, IWA Publishing 2008, pp. 23-41.
  28. Loucks, D. P., Stedinger, J. R., and Haith, D. A. (1981). Water Resources Systems Planning and Analysis, Prentice-Hall, Englewood Cliffs, N. J.
  29. Loganathan, G.V., and Bhattacharya, D. (1990). Goal-Programming techniques for optimal reservoir operations. Journal of Water Resources Planning and Management, Vol. 116, No. 6, pp. 820-838. https://doi.org/10.1061/(ASCE)0733-9496(1990)116:6(820)
  30. Masse, P. (1946). Les Reserves et la Regulation de líAvenir Dans la vie Economique, vol I, Avenir Determine (in French), Hermann and Cie, Paris.
  31. Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas Jr., H. A., Marglin, S. A. and Fair, G. M. (1962). Design of Water Resources Systems, Harvard University Press, Cambridge, Mass., U.S.A.
  32. Mohan, S., and Keskar, J.B. (1991) Optimiztion of multipurpose reservoir system operation. Journal of the American Water Resources Association, Vol. 27, No. 4, pp. 621-629. https://doi.org/10.1111/j.1752-1688.1991.tb01463.x
  33. Neelakantan, T. R. and Pundarikanthan, N. V. (1999). Hedging Rule Optimisation for Water Supply Reservoirs System. Water Resources Management Vol. 13, No. 6 pp. 409-426. https://doi.org/10.1023/A:1008157316584
  34. Oliveira, R., and Loucks, D.P. (1997) Operating rules for multireservoir systems, Water Resources Research, Vol. 33, No. 4, pp. 839-852. https://doi.org/10.1029/96WR03745
  35. Randall, D., Cleland, L., Kuehne, C.S., Link, G.W., and Sheer, D.P. (1997) Water supply planning simulation model using mixedinteger linear programming 'Engine', Journal of Water Resources Planning and Management, Vol. 123, No. 2, pp. 116-124. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(116)
  36. Shih, J.-S., and ReVelle, C. (1994). Water-supply operations during drought: Continuous hedging rules, Journal of Water Resources Planning and Management, Vol. 120, No. 5, pp. 613-629. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:5(613)
  37. Shih, J.-S., and ReVelle, C. (1995). Water-supply operations during drought: A discrete hedging rule. European Journal of Operational Research, Vol. 82, No. 1, pp. 163-175. https://doi.org/10.1016/0377-2217(93)E0237-R
  38. Simonovic, S. P. (1992). Reservoir system analysis: Closing gap between theory and practice, Journal of Water Resources Planning and Management, Vol. 118, No. 3, pp. 262-280. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262)
  39. Srinivasan, K. and Philipose, M. C. (1996). Evaluation and selection of hedging policies using stochastic reservoir simulation, Water Resources Management, Vol. 10, No. 3, pp. 163-188. https://doi.org/10.1007/BF00424201
  40. Srinivasan, K. and Philipose, M. C. (1998). Effect of hedging on over-year reservoir performance, Water Resources Management, Vol. 12, No. 2, pp. 95-120. https://doi.org/10.1023/A:1007936115706
  41. Stedinger, J. R. (1978). Comment on value of information in reservoir optimization, Water Resources Research, Vol. 14, No. 5, pp. 984-986. https://doi.org/10.1029/WR014i005p00984
  42. Tejada-Guibert, J.A., Johnson, S.A. and Stedinger, JR (1995) The value of hydrologic information in stochastic dynamic programming models of a multireservoir system, Water Resources Research, Vol. 31, No. 10, pp. 2571-2579. https://doi.org/10.1029/95WR02172
  43. Tu, M.-Y., Hsu, N.-S., and Yeh, W. W.-G. (2003). Optimization of reservoir management and operation with hedging rules, Journal of Water Resources Planning and Management, Vol. 129, No. 2, pp. 86-97. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:2(86)
  44. Vasiliadis, Haralambos V. and Karamouz, Mohammad (1994). Demand-driven Operation of Reservoirs Using Uncertaintybased Optimal Operating Policies, Journal of Water Resources Planning and Management, Vol. 120, No. 1, pp. 101-114. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:1(101)
  45. Watkins, D. W., and McKinney, D. C., (1997). Finding robust solutions to water resources problems, Journal of Water Resources Planning and Management, Vol. 123, No. 1, pp. 49-58. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:1(49)
  46. You, Jiing-Yun and Cai, Ximing (2008). Hedging rule for reservoir operations: 1. A theoretical analysis, Water Resources Research, VOL. 44, W01415, doi:10.1029/2006WR005481.