DOI QR코드

DOI QR Code

Comparative Study on Performances of Composite Anodes of SiO, Si and Graphite for Lithium Rechargeable Batteries

  • Received : 2009.08.17
  • Accepted : 2010.03.09
  • Published : 2010.05.20

Abstract

The electrochemical performances of anode composites comprising elemental silicon (Si), silicon monoxide (SiO), and graphite (C) were investigated. The composite devoid of elemental silicon (SiO:C = 1:1) and its carbon coated composite showed reduced capacity degradation with measured values of 606 and 584 mAh/g at the fiftieth cycle. The capacity retention nature when the composites were cycled followed the order of Si:SiO:C = 3:1:4 < Si:SiO:C = 2:2:4 < SiO:C = 1:1 < SiO:C = 1:1 (carbon coated). A comparison of the capacity retention properties for the composites in terms of the silicon content showed that a reduced silicon content increased the stability of the composite electrodes. Even though the carbon-coated composite delivered low capacity during cycling compared to the other composites, its low capacity degradation made the anode a better choice for lithium ion batteries.

Keywords

References

  1. Dimov, N.; Fukuda, K.; Umeno, T.; Kugino, S.; Yoshio, M. J. Power Sources 2003, 114, 88. https://doi.org/10.1016/S0378-7753(02)00533-5
  2. Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48, 1579. https://doi.org/10.1016/S0013-4686(03)00030-6
  3. Doh, C. H.; Shin, H. M.; Kim, D. H.; Jeong, Y. D.; Moon, S. I.; Jin, B. S.; Kim, H. S.; Kim, K. W.; Oh, D. H.; Veluchamy, A. J. Alloys Compd. 2008, 461, 321. https://doi.org/10.1016/j.jallcom.2007.06.125
  4. Lee, J. H.; Kim W. J.; Kim, J. Y.; Lim, S. H.; Lee, S. M. J. Power Sources 2008, 176, 353. https://doi.org/10.1016/j.jpowsour.2007.09.119
  5. Kim, Y. L.; Sun, Y. K.; Lee, S. M. Electrochim. Acta 2008, 53, 4500. https://doi.org/10.1016/j.electacta.2008.01.050
  6. Doh, C. H.; Shin, H. M.; Kim, D. H.; Chung, Y. D.; Moon, S. I.; Jin, B. S.; Kim, H. S.; Kim, K. W.; Oh, D. H.; Veluchamy, A. Bull. Korean Chem. Soc. 2008, 29, 309. https://doi.org/10.5012/bkcs.2008.29.2.309
  7. Zuo, P.; Yin, G. J. Alloys Compd. 2006, 414, 265. https://doi.org/10.1016/j.jallcom.2005.07.026
  8. Wu, X. D.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Electrochem. Commun. 2003, 5, 935. https://doi.org/10.1016/j.elecom.2003.09.001
  9. Patel, P.; Kim, I. S.; Kumta, P. N. Material Science and engineering B 2005, 116, 347. https://doi.org/10.1016/j.mseb.2004.05.046
  10. Dong, H.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2003, 5, 952. https://doi.org/10.1016/j.elecom.2003.09.004
  11. Park, M. S.; Rajendran, S.; Kang, Y. M.; Han, K. S.; Han, Y. S.; Lee, J. Y. J. Power Sources 2006, 158, 650. https://doi.org/10.1016/j.jpowsour.2005.08.052
  12. Jayaprakash, N.; Kalaiselvi, N.; Doh, C. H. Intermetallics 2007, 15, 442. https://doi.org/10.1016/j.intermet.2006.08.014
  13. Dimov, N.; Fukuda, K.; Umeno, T.; Kugino, S.; Yoshio, M. J. Power Sources 2003, 114, 88. https://doi.org/10.1016/S0378-7753(02)00533-5
  14. Lee, H. Y.; Kim, Y. L.; Kong, M. K.; Lee, S. M. J. Power Sources 2005, 141, 159. https://doi.org/10.1016/j.jpowsour.2004.08.023
  15. Yang, X.; Wen, Z.; Xu, X.; Lin, B.; Huang, S. J. Power Sources 2007, 164, 880. https://doi.org/10.1016/j.jpowsour.2006.11.010
  16. Zhang, T.; Gao, J.; Zhang, H. P.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. Electrochem. Commun. 2007, 9, 886. https://doi.org/10.1016/j.elecom.2006.11.026
  17. Kim, J. H.; Sohn, H. J.; Kim, H.; Jeong, G.; Choi, W. J. Power Sources 2007, 170, 456. https://doi.org/10.1016/j.jpowsour.2007.03.081
  18. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  19. Miyachi, M.; Yamamoto, H.; Kawai, H.; Ohta, T.; Shirakata, M. J. Electrochem. Soc. 2005, 152(10), A2089-A2091. https://doi.org/10.1149/1.2013210
  20. Lee, H. Y.; Lee, S. M. Electrochem. Commun. 2004, 6, 465. https://doi.org/10.1016/j.elecom.2004.03.005
  21. Kim, J. H.; Sohn, H. J.; Kim, H.; Jeong, G.; Choi, W. J. Powers Sources 2007, 170, 456. https://doi.org/10.1016/j.jpowsour.2007.03.081
  22. Doh, C. H.; Park, C. W.; Shin, H. M.; Kim, D. H.; Chung, Y. D.; Moon, S. I.; Jin, B. S.; Kim, H. S.; Veluchamy, A. J. Power Sources 2008, 179, 367. https://doi.org/10.1016/j.jpowsour.2007.12.074
  23. Yuan, X.; Chao, Y. J.; Ma, Z. F.; Deng, X. Electrochem. Commun. 2007, 9, 2591. https://doi.org/10.1016/j.elecom.2007.08.004
  24. Chao, Y. J.; Yuan, X.; Ma, Z. F. Electrochem. Acta 2008, 53, 3468. https://doi.org/10.1016/j.electacta.2007.12.033
  25. Doh, C. H.; Shin, H. M.; Kim, D. H.; Ha, Y. C.; Jin, B. S.; Kim, H. S.; Moon, S. I.; Veluchamy, A. Electrochem. Commun. 2008, 10, 233. https://doi.org/10.1016/j.elecom.2007.11.034
  26. Schulmeister, K.; Madar, W. J. Non-Cryst. Solids 1975, 17, 215. https://doi.org/10.1016/0022-3093(75)90052-6

Cited by

  1. Scalable Synthesis of Dual-Carbon Enhanced Silicon-Suboxide/Silicon Composite as Anode for Lithium Ion Batteries vol.12, pp.07, 2017, https://doi.org/10.1142/S1793292017500849
  2. Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study vol.21, pp.8, 2017, https://doi.org/10.1007/s10008-017-3561-z
  3. 3-Aminopropyltriethoxysilane-Assisted Si@SiO2/CNTs Hybrid Microspheres as Superior Anode Materials for Li-ion Batteries vol.9, pp.1, 2017, https://doi.org/10.1007/s12633-015-9398-0
  4. Fabrication of Silicon Oxide Base Powders for Anode of Lithium Ion Battery by Hydrolysis Flame Synthesis vol.811, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.811.98
  5. Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries vol.4, pp.65, 2014, https://doi.org/10.1039/c4ra03475a
  6. Doubling the Capacity of Lithium Manganese Oxide Spinel by a Flexible Skinny Graphitic Layer vol.126, pp.20, 2010, https://doi.org/10.1002/ange.201400490
  7. Doubling the Capacity of Lithium Manganese Oxide Spinel by a Flexible Skinny Graphitic Layer vol.53, pp.20, 2014, https://doi.org/10.1002/anie.201400490
  8. High-Performance Soft Carbons Prepared by Treatment with Various Phosphorus Acids vol.35, pp.8, 2010, https://doi.org/10.5012/bkcs.2014.35.8.2357
  9. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials vol.1, pp.2, 2010, https://doi.org/10.1002/cey2.24