DOI QR코드

DOI QR Code

Development of Helmholtz Solver for Thermo-Acoustic Instability within Combustion Devices

연소시스템의 열음향 불안정 예측을 위한 Helmholtz Solver 개발

  • 김성구 (한국항공우주연구원 연소기팀) ;
  • 최환석 (한국항공우주연구원 연소기팀) ;
  • 차동진 (국립한밭대학교 건축설비공학과)
  • Received : 2009.12.01
  • Accepted : 2010.02.12
  • Published : 2010.05.01

Abstract

In order to effectively predict thermo-acoustic instability within real combustors of rocket engines and gas turbines, in the present study, the Helmholtz equation in conjunction with the time lag hypothesis is discretized by the finite element method on three-dimensional hybrid unstructured mesh. Numerical nonlinearity caused by the combustion response term is linearized by an iterative method, and the large-scale eigenvalue problem is solved by the Arnoldi method available in the ARPACK. As a consequence, the final solution of complex valued eigenfrequency and acoustic pressure field can be interpreted as resonant frequency, growth rate, and modal shape for acoustic modes of interest. The predictive capabilities of the present method have been validated against two academic problems with complex impedance boundary and premixed flame, as well as an ambient acoustic test for liquid rocket combustion chamber with/without baffle.

본 연구에서는 실제 로켓엔진 및 가스터빈용 연소기 내부의 열음향 불안정을 효과적으로 예측하기 위하여, 헬름홀츠 방정식과 시간지연모델을 이용한 3차원 유한요소법 해석코드를 개발하였다. 연소응답항에 의해 수치적으로 야기되는 비선형성은 반복법으로 선형화 하였으며, Arnoldi 방법을 사용하여 대용량 고유치 문제를 해석하였다. 해석결과인 복소각주파수와 음향 압력장을 통해 각 음향모드의 공진주파수, 진폭의 증폭/감쇠 여부 그리고 모드 형태를 예측할 수 있다. 이론해가 존재하는 두 가지 문제를 통해 출구 임피던스와 예혼합 화염이 종 방향 음향장에 미치는 영향에 대한 예측 정확도를 평가하였으며, 배플 유무에 따른 횡 방향 음향 모드의 주파수 변이를 상온 음향시험 결과와 비교/검증하였다.

Keywords

References

  1. Yang, V. and Anderson, W. E. (eds),"Liquid Rocket Engine Combustion Instability",Progress in Astronautics and Aeronautics, Vol 169,AIAA, 1995.
  2. Lieuwen, T. C. and Yang, V. (eds),"Combustion Instabilities in Gas Turbine Engines",Progress in Astronautics and Aeronautics, Vol 210,AIAA, 2005.
  3. Stow, S. and Dowling, A., "ThermoacousticOscillations in an Annular Combustor",ASME Turbo Expo, 2001-GT-0037.
  4. Cha, D. J., Kim, J. H., and Joo, Y. J.,"Analysis of the Combustion Instability of aModel Gas Turbine Combustor by the TransferMatrix Method", Journal of Mechanical Scienceand Technology, Vol. 23, 2009, pp. 1602-1612. https://doi.org/10.1007/s12206-009-0427-z
  5. Pankiewitz, C. and Sattelmayer, T., "TimeDomain Simulation of Combustion Instabilitiesin Annular Combustors", Journal of Engineeringfor Gas Turbines and Power, Vol. 125, No. 3,2003, pp. 677-685. https://doi.org/10.1115/1.1582496
  6. Pierringer, J., Sattelmayer, T., and Fassl,F., "Simulation of Combustion Instabilities inLiquid Rocket Engines with Acoustic PerturbationEquations", Journal of Propulsion and Power, Vol.25, No. 5, 2009, pp. 1020-1031. https://doi.org/10.2514/1.38782
  7. Nicoud, F., Benoit, L., Sensiau, C., andPoinsot, T., "Acoustic Modes in Combustors withComplex Impedances and MultidimensionalActive Flames", AIAA Journal, Vol. 45, No. 2,2007, pp. 426-441. https://doi.org/10.2514/1.24933
  8. Sensiau, C., Nicoud, F., van Gijzen, M.,and Leeuwen, J. W., “A Comparison of Solversfor Quadratic Eigenvalue Problems fromCombustion", International Journal for NumericalMethods in Fluids, Vol. 56, 2008, pp. 1481-1487. https://doi.org/10.1002/fld.1691
  9. Giauque, A., Selle, L., Poinsot, T., Buechner, H., Kaufmann, P., and Krebs, W., "System identification of a large-scale swirled partially premixed combustor using LES and measurements", Journal of Turbulence, Vol. 6, No. 21, 2005, pp. 1-20. https://doi.org/10.1080/14685240512331391985
  10. Huang, Y. and Yang, V., "Dynamics andstability of lean-premixed swirl-stabilizedcombustion", Progress in Energy and CombustionScience, Vol. 35, No. 4, 2009, pp. 293-364. https://doi.org/10.1016/j.pecs.2009.01.002
  11. 김성구, 김홍집, 손채훈, "로켓엔진 연소기 설계의 음향안정성 평가를 위한 해석코드 개발", 한국항공우주학회지, 제32권 제6호, 2004, pp. 110-116.
  12. 김홍집, 김성구, "로켓연소실에서 음향공의 음향학적 감쇠에 대한 정량적 고찰", 대한기계학회논문집B, 제30권 제1호, 2006, pp. 32-40. https://doi.org/10.3795/KSME-B.2006.30.1.032
  13. 김홍집, 김성구, 한영민, 최환석, "비행용 가스발생기 모사배관 도출 및 연소불안정 제어를 위한 음향해석", 한국추진공학회지, 제9권 제3호, 2005, pp. 1-9.
  14. Sohn, C. H., Park, I-S., Kim, S.-K., andKim, H. J., "Acoustic Tuning of Gas-LiquidScheme Injectors for Acoustic Damping in aCombustion Chamber of a Liquid RocketEngine", Journal of Sound and Vibration, Vol.304, 2007, pp. 793-810. https://doi.org/10.1016/j.jsv.2007.03.036
  15. Lehoucq, R. and Sorensen, D., "ARPACK.User's Guide: Solution of Large Scale EigenvalueProblems with Implicitly Restarted Arnoldi Methods",www.caam.rice.edu/software/ARPACK, 1997.
  16. Crocco, L. and Cheng, S., "Theory ofCombustion Instability in Liquid PropellantRocket Motors", Butterworths, London, 1956.
  17. Portillo, J. E. and Sisco, J. C., "Generalized Combustion Instability Model", AIAA-2006-4889, 2006.
  18. Lieuwen, T., "Modeling Premixed Combustion-Acoustic Wave Interactions: A Review", Journal of Propulsion and Power, Vol. 19, No. 5, 2003, pp. 765-781. https://doi.org/10.2514/2.6193
  19. Smith, R., Ellis, M., Xia, G., Sankaran, V.,Anderson, W., and Merkle, C., L., "ComputationalInvestigation of Acoustics and Instabilities in aLongitudinal-Mode Rocket Combustor", AIAAJournal, Vol. 46, No. 11, 2008, pp. 2659-2673. https://doi.org/10.2514/1.28125
  20. 김성구, 박태선, "시간지연 모델을 이용한 액체로켓엔진의 축방향 비선형 연소불안정 해석", KARI-REG-TM-2004-039, 한국항공우주연구원.
  21. Day, D. and Heroux, M. A., "Solvingcomplex valued linear systems via equivalentreal formulations", SIAM J. Sci. Comput., Vol.23, No. 2, 2001, pp. 480-498. https://doi.org/10.1137/S1064827500372262
  22. Munankarmy, A. and Heroux, M. A.,"Comparison of two equivalent real formulationsfor complex-valued linear systems", AmericanJournal of Undergraduate Research, Vol. 1, No. 3,2002, pp. 17-25.
  23. Saad, Y., "SPARSKIT: a Basic Tool Kit forSparse Matrix Computations, Version 2", 1994.
  24. 고영성, 이광진, 김홍집, "액체로켓엔진 연소실에서의 상온 음향 시험", 대한기계학회논문집B, 제28권 제1호, 2004, pp. 16-23. https://doi.org/10.3795/KSME-B.2004.28.1.016

Cited by

  1. Effects of Acoustic Boundary Conditions on Combustion Instabilities in a Gas Turbine Combustor vol.19, pp.4, 2015, https://doi.org/10.6108/KSPE.2015.19.4.015
  2. Flame Response Modeling for Lean Premixed Combustors Using CFD vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-B.2014.38.9.773