DOI QR코드

DOI QR Code

단조함수에 대한 불확실성 중요도 측도의 평가

Evaluation of Uncertainty Importance Measure for Monotonic Function

  • 발행 : 2010.12.30

초록

시스템의 민감도 분석을 위한 불확실성 중요도 측도란 어떠한 입력변수의 불확실성이 반응변수의 불확실성에 미치는 영향의 정도를 평가하여, 반응변수의 불확실성을 감소시키기 위해서는 어떤 입력변수들의 불확실성을 감소시키는 것이 효과적인지를 밝히는데 사용된다. 본 논문에서는 입력변수와 반응변수 간의 관계식이 단조함수일 때, 어떤 입력변수의 불확실성이 제거될 때 반응변수 분산의 기대되는 감소량을 백분율로 측정하는 측도를 평가하기 위한 방법을 제안한다. 제안된 평가 방법은 입력변수와 반응변수 간의 관계식이 선형 및 비선형 단조함수 모두에 적용될 수 있으며 입력변수의 분포에 제한이 없으며, 입력변수의 분포를 이산형 분포로 근사화하는 기법을 사용함으로써 불확실성 중요도 측도의 안정적인 추정치를 얻을 수 있다 반면에 제안된 평가 방법은 몬테칼로 시뮬레이션을 기반으로 하기 때문에 계산량이 많은 단점이 있다.

In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

키워드

과제정보

연구 과제 주관 기관 : 동의대학교

참고문헌

  1. Borgonovo, E., "Measuring uncertainty importance: investigation and comparison of alternative approaches," Risk Analysis, vol 26, no 5, pp.1349-1361, 2006. https://doi.org/10.1111/j.1539-6924.2006.00806.x
  2. Saltelli, A. and Marivoet, J., "Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques," Reliability Engineering and System Safety, vol 28, pp.229-253, 1990. https://doi.org/10.1016/0951-8320(90)90065-U
  3. Helton, J. C., "Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal," Reliability Engineering and System Safety, vol 42, pp.327-367, 1993. https://doi.org/10.1016/0951-8320(93)90097-I
  4. Frey, C. H. and Patil, S. R., "Identification and review of sensitivity analysis methods," Risk Analysis, vol 22, no 3, pp.553-571, 2002. https://doi.org/10.1111/0272-4332.00039
  5. Nakashima, K. and Yamato, K., "Variance-importance of system components," IEEE Trans. Reliability, vol R-31, pp.99-100, 1982. https://doi.org/10.1109/TR.1982.5221247
  6. Bier, V. M., "A measure of uncertainty importance for components in fault trees," Transactions of the 1983 Winter Meeting of the American Nuclear Society, vol 45, no 1, pp.384-385, 1983.
  7. Pan, Z. J. and Tai, Y. C., "Variance importance of system components by Monte Carlo," IEEE Trans. Reliability, vol 37, pp.421-423, 1988. https://doi.org/10.1109/24.9851
  8. Iman, R. L., "A matrix-based approach to uncertainty and sensitivity analysis for fault trees," Risk Analysis, vol 7, pp.21-33, 1987. https://doi.org/10.1111/j.1539-6924.1987.tb00966.x
  9. Iman, R. L. and Hora, S. C., "A robust measure of uncertainty importance for use in fault tree system analysis," Risk Analysis, vol 10, pp.401-406, 1990. https://doi.org/10.1111/j.1539-6924.1990.tb00523.x
  10. Sobol, I. M., "Sensitivity estimates for nonlinear mathematical models," Mathematical Modeling and Computational Experiment, vol 1, no 4, pp.407-414, 1993.
  11. Saltelli, A., Tarantola, S., and Chan, K. P. S., "A quantitative model-independent method for global sensitivity analysis of model output," Technometrics, vol 41, no 1, pp.39-56, 1999. https://doi.org/10.2307/1270993
  12. Sobol, I. M., "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Mathematics and Computers in Simulation, vol 55, no 1, pp.271-280, 2001. https://doi.org/10.1016/S0378-4754(00)00270-6
  13. Saltelli, A., "Sensitivity analysis for importance assessment," Risk Analysis, vol 22, no 3, pp.579-590, 2002. https://doi.org/10.1111/0272-4332.00040
  14. Park, C. K. and Ahn, K. I., "A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment," Reliability Engineering and System Safety, vol 46, pp.253-261, 1994. https://doi.org/10.1016/0951-8320(94)90119-8
  15. Chun, M. H., Han, S. J. and Tak, N. I., "An uncertainty importance measure using a distance metric for the change in a cumulative distribution function," Reliability Engineering and System Safety, vol 70, pp.313-321, 2000. https://doi.org/10.1016/S0951-8320(00)00068-5
  16. Borgonovo, E., "A new uncertainty importance measure," Reliability Engineering and System Safety, vol 92, pp.771-784, 2007. https://doi.org/10.1016/j.ress.2006.04.015
  17. Rushdi, A. M., "Uncertainty analysis of fault-tree outputs," IEEE Trans. Reliability, vol R-34, pp.458-462, 1985. https://doi.org/10.1109/TR.1985.5222232
  18. Cho, J. G. and Yum, B. J., "Development and evaluation of an uncertainty importance measure in fault tree analysis," Reliability Engineering and System Safety, vol 57, pp.143-157, 1997. https://doi.org/10.1016/S0951-8320(97)00024-0
  19. 조재균, 정석찬, "결점나무 분석에서 불확실성 중요도 측도의 평가," 정보시스템연구, 제17권, 3호, pp.25-37, 2008.
  20. D'Errico, J. R. and Zaino Jr., N. A., "Statistical tolerancing using a modification of Taguchi' s method," Technometrics, vol 30, no 4, pp.397-405, 1988. https://doi.org/10.2307/1269802
  21. Seo, H. S. and Kwak, B. M., "Efficient statistical tolerance analysis for general distributions using three-point information," International Journal of Production Research, vol 40, pp.931-944, 2002. https://doi.org/10.1080/00207540110095709