DOI QR코드

DOI QR Code

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon (Department of Chemical and Materials Engineering, National Central University) ;
  • Tamai, Miho (Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology) ;
  • Tagawa, Yoh-Ichi (Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology) ;
  • Chang, Yung (Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University) ;
  • Ling, Qing-Dong (Cathay Medical Research Institute, Cathay General Hospital)
  • Received : 2009.10.21
  • Accepted : 2009.12.14
  • Published : 2010.04.25

Abstract

Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

References

  1. Barona, G.N.B., Cha, B.J. and Jung, B. (2007), "Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation", J. Membrane Sci., 290(1-2), 46-54. https://doi.org/10.1016/j.memsci.2006.12.013
  2. Belfer, S., Fainchtain, R., Purinson, Y. and Kedem, O. (2000), "Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled", J. Membrane Sci., 172(1-2), 113-124. https://doi.org/10.1016/S0376-7388(00)00316-1
  3. Branch, D.W., Wheeler, B.C., Brewer, G.J. and Leckband, D.E. (2001), "Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture", Biomaterials, 22, 1035-1047. https://doi.org/10.1016/S0142-9612(00)00343-4
  4. Castilho, L.R., Deckwer, W.D. and Anspach, F.B. (2000), "Influence of matrix activation and polymer coating on the purification of human IgG with protein A affinity membranes", J. Membrane Sci., 172, 269-277. https://doi.org/10.1016/S0376-7388(00)00343-4
  5. Chang, Y., Cheng, T.Y., Shih, Y.J., Lee, K.R. and Lai, J.Y. (2008a), "Biofouling-resistance expanded poly(tetrafluoroethylene) membrane with a hydrogel-like layer of surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein repulsions", J. Membrane Sci., 323, 77-84. https://doi.org/10.1016/j.memsci.2008.06.023
  6. Chang, Y., Shih, Y.J., Ruaan, R.C., Higuchi, A., Chen, W.Y. and Lai, J.Y. (2008b), "Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility", J. Membrane Sci., 309, 165-174. https://doi.org/10.1016/j.memsci.2007.10.024
  7. Chen, H. and Belfort, G. (1999), "Surface modification of poly(ether sulfone) ultrafiltration membranes by lowtemperature plasma-induced graft polymerization", J. Appl. Polym. Sci., 72, 1699-1711. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1699::AID-APP6>3.0.CO;2-9
  8. Chiang, Y.C., Chang, Y., Higuchi, A., Chen, W.Y. and Ruaan, R.C. (2009), "Sulfobetaine grafted poly(vinylidene fluroride) ultrafiltration membranes exhibit excellent antifouling property", J. Membrane Sci., 339(1-2), 151- 159. https://doi.org/10.1016/j.memsci.2009.04.044
  9. Crassous, G., Harjanto, F., Mendjel, H., Sledz, J., Schue, F., Meyer, G. and Jozefowicz, M. (1985), "A new asymmetric membrane having blood compatibility", J. Membrane Sci., 22(2-3), 269-282. https://doi.org/10.1016/S0376-7388(00)81286-7
  10. Dai, Z.W., Nie, F.Q. and Xu, Z.K. (2005), "Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules", J. Membrane Sci., 264(1-2), 20-26. https://doi.org/10.1016/j.memsci.2005.04.022
  11. Dai, Z.W., Wan, L.S. and Xu, Z.K. (2008), "Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance", J. Membrane Sci., 325, 479-485. https://doi.org/10.1016/j.memsci.2008.08.013
  12. Fan, Z.F., Wang, Z., Sun, N., Wang, J. and Wang, S. (2008), "Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers", J. Membrane Sci., 320(1-2), 363-371. https://doi.org/10.1016/j.memsci.2008.04.019
  13. Fang, B.H., Ling, Q.Y., Zhao, W.F., Ma, Y., Bai, P., Wei, Q., Li, H. and Zhao, C. (2009), "Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/ poly(acrylonitrile-co-acrylic acid) blended membrane", J. Membrane Sci., 329(1-2), 46-55. https://doi.org/10.1016/j.memsci.2008.12.008
  14. Feldman, K., Hahner, G., Spencer, N.D., Harder, P. and Grunze, M. (1999), "Probing resistance to protein adsorption of oligo(ethylene glycol)-terminated self-assembled monolayers by scanning force microscopy", J. Am. Chem. Soc., 121, 10134-10141. https://doi.org/10.1021/ja991049b
  15. Feng, W., Zhu, S., Ishihara, K. and Brush, J.L. (2005), "Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization", Langmuir, 21, 5980-5987. https://doi.org/10.1021/la050277i
  16. Ghosh, R. and Cui, Z.F. (1998), "Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment", J. Membrane Sci., 139, 17-28. https://doi.org/10.1016/S0376-7388(97)00236-6
  17. Goda, T., Konno, T., Takai, M., Moro, T. and Ishihara, K. (2006), "Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization", Biomaterials, 27(30), 5151- 5160. https://doi.org/10.1016/j.biomaterials.2006.05.046
  18. Gu, J.S., Yu, H.Y., Huang, L., Tang, Z.Q., Li, W., Zhou, J., Yan, M.G. and Wei, X.Y. (2009), "Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR", J. Membrane Sci., 326, 145-152. https://doi.org/10.1016/j.memsci.2008.09.043
  19. Harder, P., Grunze, M., Dahint, R., Whitesides, G.M. and Laibinis, P.E. (1998), "Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption", J. Phys. Chem. B, 102, 426-436.
  20. Hatakeyama, E.S., Ju, H., Gabriel, C.J., Lohr, J.L., Bara, J.E., Noble, R.D., Freeman, B.D. and Gin, D.L. (2009), "New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers", J. Membrane Sci., 330, 104-116. https://doi.org/10.1016/j.memsci.2008.12.049
  21. He, X.C., Yu, H.Y., Tang, Z.Q., Liu, L.Q., Yan, M.G., Gu, J.S. and Wei, X.W. (2009), "Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification", Desalination, 244, 80-89. https://doi.org/10.1016/j.desal.2008.04.038
  22. Herrwerth, S., Eck, W., Reinhardt, S. and Grunze, M. (2003), "Factors that Determine the Protein Resistance of Oligoether Self-Assembled Monolayers − Internal Hydrophilicity, Terminal Hydrophilicity, and Lateral Packing Density", J. Am. Chem. Soc., 125(31), 9359-9366. https://doi.org/10.1021/ja034820y
  23. Hester, J.F. and Mayes, A.M. (2002), "Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation", J. Membrane Sci., 202(1-2), 119-135. https://doi.org/10.1016/S0376-7388(01)00735-9
  24. Higuchi, A., Iwata, N., Tsubaki, M. and Nakagawa, T. (1988), "Surface-modified Polysulfone Hollow Fibers", J. Appl. Polym. Sci., 36, 1753-1767. https://doi.org/10.1002/app.1988.070360804
  25. Higuchi, A., Iwata, N. and Nakagawa, T. (1990), "Surface Modified Polysulfone Hollow Fibers. II. Fibers having $CH_{2}CH_{2}CH_{2}SO_{3}$ − Segments and Immersed in HCl Solution", J. Appl. Polym. Sci., 40, 709-717. https://doi.org/10.1002/app.1990.070400508
  26. Higuchi, A., Koga, H. and Nakagawa, T. (1992), "Surface modified polysulfone hollow fibers. IV. chloromethylated fibers and their derivatives", J. Appl. Polym. Sci., 46, 449-457. https://doi.org/10.1002/app.1992.070460310
  27. Higuchi, A., Shirano, K., Harashima, M., Yoon, B.O., Hara, M., Hattori, M. and Imamura, K. (2002), "Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility", Biomaterials, 23(13), 2659-2666. https://doi.org/10.1016/S0142-9612(01)00406-9
  28. Higuchi, A., Hashiba, H., Hayashi, R., Yoon, B.O., Hattori, M. and Hara, H. (2004a), "Chemically modified polysulfone hollow fibers with zwitterionic sulfoalkylbetaine group having improved blood compatibility", ACS Symposium Series 876, 2004, chp 25.
  29. Higuchi, A., Hashiba, H., Hayashi, R., Yoon, B.O., Sakurai, M. and Hara, M. (2004b), "Serum protein and platelet adsorption on aspartic acid-immobilized polysulfone membranes", J. Biomat. Sci., Polym. E., 15(8), 1051-1063. https://doi.org/10.1163/1568562041526504
  30. Hilal, N., Kochkodan, V., Al-Khatib, L. and Levadna, T. (2004), "Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli", Desalination, 167(1-3), 293-300. https://doi.org/10.1016/j.desal.2004.06.138
  31. Hu, M.X., Yang, Q. and Xu, Z.K. (2006), "Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators", J. Membrane Sci., 285(1-2), 196-205. https://doi.org/10.1016/j.memsci.2006.08.023
  32. Hyun, J., Jang, H., Kim, K., Na, K. and Tak, T. (2006), "Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains", J. Membrane Sci., 282(1-2), 52-59. https://doi.org/10.1016/j.memsci.2006.05.008
  33. Ishihara, K., Fukumoto, K., Iwasaki, Y. and Nakabayashi, N. (1999a), "Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization", Biomaterials, 20, 1545-1551. https://doi.org/10.1016/S0142-9612(99)00052-6
  34. Ishihara, K., Fukumoto, K., Iwasaki, Y. and Nakabayashi, N. (1999b), "Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhension", Biomaterials, 20, 1553-1559. https://doi.org/10.1016/S0142-9612(98)00206-3
  35. Ishihara, K., Iwasaki, Y., Ebihara, S., Shindo, Y. and Nakabayashi, N. (2000), "Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance", Colloid Surface B, 18, 325-335. https://doi.org/10.1016/S0927-7765(99)00158-7
  36. lto, Y., Kotera, S., Inabe, M., Kono, K. and Imanishi, Y. (1990), "Control of pore size of polycarbonate membrane with straight pores by poly(acrylic acid) grafts", Polymer, 31, 2157-2161. https://doi.org/10.1016/0032-3861(90)90090-L
  37. Kaeselev, B., Pieracci, J. and Belfort, G. (2001), "Photoinduced grafting of ultrafiltration membranes: comparison of poly(ether sulfone) and poly(sulfone)", J. Membrane Sci., 194(2), 245-261. https://doi.org/10.1016/S0376-7388(01)00544-0
  38. Kawai, F. (2002), "Microbial degradation of polyethers", Appl. Microbiol. Biot., 58, 30-38. https://doi.org/10.1007/s00253-001-0850-2
  39. Kim, J.H., Kang, M.S. and Kim, C.K. (2005), "Fabrication of membranes for the liquid separation. 1. Ultrafiltration membranes prepared from novel miscible blends of polysulfone and poly(1-vinylpyrrolidone-coacrylonitrile) copolymers", J. Membrane Sci., 265(1-2), 167-175. https://doi.org/10.1016/j.memsci.2005.05.004
  40. Kull, K.R., Steen, M.L. and Fisher, E.R. (2005), "Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes", J. Membrane Sci., 246(2), 203-215. https://doi.org/10.1016/j.memsci.2004.08.019
  41. Li, L., Yan, G.P. and Wu, J.Y. (2009), "Modification of polysulfone membranes via surface-initiated atom transfer radical polymerization and their antifouling properties", J. Appl. Polym. Sci., 111, 1942-1946. https://doi.org/10.1002/app.29204
  42. Liu, S.X., Kim, J.T., Kim, S. and Singh, M. (2009), "The Effect of Polymer Surface Modification Via Interfacial Polymerization on Polymer-Protein Interaction", J. Appl. Polym. Sci., 112(3), 1704-1715. https://doi.org/10.1002/app.29606
  43. Liu, Z.M., Xu, Z.K., Wan, L.S., Wu, J. and Ulbricht, M. (2005), "Surface modification of polypropylene microfiltration membranes by the immobilization of poly (N-vinyl-2-pyrrolidone): a facile plasma approach", J. Membrane Sci., 249(1-2), 21-31. https://doi.org/10.1016/j.memsci.2004.10.001
  44. Louie, J.S., Pinnau, I., Ciobanu, I., Ishida, K.P., Ng, A. and Reinhard, M. (2006), "Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes", J. Membrane Sci., 280, 762-770. https://doi.org/10.1016/j.memsci.2006.02.041
  45. Mehta, A. and Zydney, A.L. (2008), "Effect of spacer arm length on the performance of charge-modified ultrafiltration membranes", J. Membrane Sci., 313, 304-314. https://doi.org/10.1016/j.memsci.2008.01.014
  46. Nabe, A., Staude, E. and Belfort, G. (1997), "Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions", J. Membrane Sci., 133, 57-72. https://doi.org/10.1016/S0376-7388(97)00073-2
  47. Nie, F.Q., Xu, Z.K., Yang, Q., Wu, J. and Wan, L. (2004), "Surface modification of poly(acrylonitrile-co-maleic acid) membranes by the immobilization of poly(ethylene glycol)", J. Membrane Sci., 235(1-2), 147-155. https://doi.org/10.1016/j.memsci.2004.02.006
  48. Nunes, S.P., Sforca, M.L. and Peinemann, K.V. (1995), "Dense hydrophilic composite membranes for ultrafiltration", J. Membrane Sci., 106, 49-56. https://doi.org/10.1016/0376-7388(95)00076-O
  49. Qiu, C.Q., Nguyen, Q.T. and Ping, Z.H. (2007), "Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes", J. Membrane Sci., 295(1-2), 88- 94. https://doi.org/10.1016/j.memsci.2007.02.040
  50. Pieracci, J., Crivello, J.V. and Belfort, G. (1999), "Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling", J. Membrane Sci., 156(2), 223-240. https://doi.org/10.1016/S0376-7388(98)00347-0
  51. Rahimpour, A., Madaeni, S.S. and Mehdipour-Ataei, S. (2008), "Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes", J. Membrane Sci., 311(1-2), 349-359. https://doi.org/10.1016/j.memsci.2007.12.038
  52. Rajam, S. and Ho, C.C. (2006), "Graft coupling of PEO to mixed cellulose esters microfiltration membranes by UV irradiation", J. Membrane Sci., 281(1-2), 211-218. https://doi.org/10.1016/j.memsci.2006.03.034
  53. Shi, Q., Su, Y.L., Zhu, S.P., Li, C., Zhao, Y. and Jiang, Z. (2007), "A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane", J. Membrane Sci., 303(1-2), 204-212. https://doi.org/10.1016/j.memsci.2007.07.009
  54. Su, Y.L., Li, C., Zhao, W., Shi, Q., Wang, H., Jiang, Z. and Zhu, S. (2008), "Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties", J. Membrane Sci., 322, 171-177. https://doi.org/10.1016/j.memsci.2008.05.047
  55. Susanto, H., Balakrishnan, M. and Ulbricht, M. (2007), "Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes", J. Membrane Sci., 288, 157-167. https://doi.org/10.1016/j.memsci.2006.11.013
  56. Takahashi, A. and Hisatomi, H. (2009), Hydrophilic monomers suppress the adsorption of plasma protein onto a poly(vinylidene fluoride) membrane, Molecular Medicine Reports, 2, 749-752.
  57. Taniguchi, M., Kilduff, J.E. and Belfort, G. (2003), "Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter", J. Membrane Sci., 222(1-2), 59-70. https://doi.org/10.1016/S0376-7388(03)00192-3
  58. Tian, M., Zhong, R., Sun, S.D., Zhao, C., Huang, Z. and Yue, Y. (2007), "Comparison of two approaches to grafting hydrophilic polymer chains onto polysulfone films", J. Membrane Sci., 103, 3818-3826.
  59. Toyomoto, K. and Higuchi, A. (1992), Microfiltration and Ultrafiltration, in Membrane Science and Technology (Eds. Y. Osada and T. Nakagawa), Marcel Dekker Inc., New York, p289-331.
  60. Ulbricht, M. and Belfort, G. (1996), "Surface modification of ultrafiltration membranes by low temperature plasma .2. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membrane Sci., 111, 193-215. https://doi.org/10.1016/0376-7388(95)00207-3
  61. Ulbricht, M., Matuschewski, H., Oechel, A. and Hicke, H.G. (1996a), "Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes", J. Membrane Sci., 115(1), 31-47. https://doi.org/10.1016/0376-7388(95)00264-2
  62. Ulbricht, M., Riedel, M. and Marx, U. (1996b), "Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules", J. Membrane Sci., 120, 239-259. https://doi.org/10.1016/0376-7388(96)00148-2
  63. Vanderah, D.J., La, H., Naff, J., Silin, V. and Rubinson, K.A. (2004), "Control of protein adsorption: molecular level structural and spatial variables", J. Am. Chem. Soc., 126, 13639-13641. https://doi.org/10.1021/ja047744n
  64. Vanderah, D.J., Vierling, R.J. and Walker, M.L. (2009), "Oligo(ethylene oxide) Self-Assembled Monolayers, with Self-Limiting Packing Densities for the Inhibition of Nonspecific Protein Adsorption", Langmuir, 25, 5026-5030. https://doi.org/10.1021/la803896a
  65. Wang, Y., Kim, J.H., Choo, K.H., Lee, Y.S. and Lee, C.H. (2000), "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization", J. Membrane Sci.,169(2), 269-276. https://doi.org/10.1016/S0376-7388(99)00345-2
  66. Wang, Y.Q., Su, Y.L., Ma, X.L., Sun, Q. and Jiang, Z.Y. (2006), "Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance", J. Membrane Sci., 283(1- 2), 440-447. https://doi.org/10.1016/j.memsci.2006.07.021
  67. Wavhal, D.S. and Fisher, E.R. (2002), "Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization", J. Membrane Sci., 209, 255-269. https://doi.org/10.1016/S0376-7388(02)00352-6
  68. Yu, H.Y., Liu, L.Q., Tang, Z.Q., Yan, M.G., Gu, J.S. and Wei, X.W. (2008), "Mitigated membrane fouling in an SMBR by surface modification", J. Membrane Sci., 310(1-2), 409-417. https://doi.org/10.1016/j.memsci.2007.11.017
  69. Zhao, C.S., Liu, X.D., Rikimaru, S., Nomizu, M. and Nishi, N. (2003), "Surface characterization of polysulfone membranes modified by DNA immobilization", J. Membrane Sci., 214(2), 179-189 https://doi.org/10.1016/S0376-7388(02)00524-0
  70. Zhao, Y.H., Qian, Y.L., Pang, D.X., Zhu, B.K. and Xu, Y.Y. (2007), "Porous membranes modified by hyperbranched polymers II. Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes", J. Membrane Sci., 304(1-2), 138-147. https://doi.org/10.1016/j.memsci.2007.07.029
  71. Zhao, Y.H., Qian, Y.L., Zhu, B.K. and Xu, Y.Y. (2008a), "Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process", J. Membrane Sci., 310(1-2), 567-576. https://doi.org/10.1016/j.memsci.2007.11.040
  72. Zhao, W., Su, Y.L., Li, C., Shi, Q., Ning, X. and Jiang, Z. (2008b), "Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent", J. Membrane Sci., 318(1-2), 405-412. https://doi.org/10.1016/j.memsci.2008.03.013
  73. Zhang, M.G., Nguyen, Q.T. and Ping, Z.H. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membrane Sci., 327, 78-86. https://doi.org/10.1016/j.memsci.2008.11.020
  74. Zhou, J., Meng, S., Guo, Z., Du, Q. and Zhong, W. (2007), "Phosphorylcholine-modified poly (ethylene-co-vinyl alcohol) microporous membranes with improved protein-adsorption-resistance property", J. Membrane Sci., 305(1-2), 279-286. https://doi.org/10.1016/j.memsci.2007.08.013

Cited by

  1. Utilization improvement of PDMS and fluoropolymers by mutual application vol.2, pp.1, 2011, https://doi.org/10.12989/mwt.2011.2.1.039
  2. Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application vol.373, 2015, https://doi.org/10.1016/j.desal.2015.07.008