DOI QR코드

DOI QR Code

Effect of Young Phragmites communis Leaves Powder on Lipid Metabolism and Erythrocyte Antioxidant Enzyme Activities in High-Fat Diet Fed Mice

갈대순분말이 고지방을 급여한 마우스의 지질대사 및 적혈구 항산화방어계에 미치는 영향

  • Lee, Jin (Dept. of Food and Nutrition, Sunchon National University) ;
  • Jeong, Joo-Yong (Dept. of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Cho, Young-Sook (Dept. of Food and Nutrition, Sunchon National University) ;
  • Park, Seok-Kyu (Dept. of Food and Nutrition, Sunchon National University) ;
  • Kim, Kwang-Jin (Gardaenara Agricultural Co. Ltd., Sunchon National University) ;
  • Kim, Myung-Joo (Faculty of Hotel Cuisine, Daegu Polytechnic College) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 이진 (순천대학교 식품영양학과) ;
  • 정주영 (순천대학교 교육대학원 영양교육) ;
  • 조영숙 (순천대학교 식품영양학과) ;
  • 박석규 (순천대학교 식품영양학과) ;
  • 김광진 ((주)갈대나라) ;
  • 김명주 (대구산업정보대학 호텔조리계열) ;
  • 이미경 (순천대학교 식품영양학과)
  • Received : 2010.01.26
  • Accepted : 2010.03.18
  • Published : 2010.05.31

Abstract

This study investigated the effect of young Phragmites communis (Pc) leaves on lipid profiles, lipid metabolism and erythrocyte antioxidant defense system in high-fat diet fed mice. Three groups of mice were fed different diets for 8 weeks: normal diet (Normal), high-fat diet (High-fat; 37% calories from fat) and high-fat diet supplemented with 1% Pc (wt/wt, HF-Pc). Body weight, daily food intake and energy intake tended to decrease by Pc supplement in high-fat fed mice. Pc supplementation significantly lowered plasma triglyceride and total cholesterol concentrations compared to the high-fat control group. Pc also lowered hepatic and heart cholesterol contents, whereas it significantly increased fecal excretion of triglyceride and cholesterol compared to the high-fat control group. Pc significantly inhibited fatty acid synthase, 3-hydroxy-3-methylglutaryl CoA reductase and acyl-CoA:cholesterol acyltransferase activities compared to the high-fat control group. Erythrocyte superoxide dismutase and catalase activities were also significantly higher in the high-fat group than in the normal group, however Pc supplementation reversed these changes. The Pc supplementation significantly lowered erythrocyte lipid peroxidation level compared to the high-fat control group. Accordingly, these results suggest that Pc improves lipid metabolism and erythrocyte antioxidant defense system in high-fat diet fed mice.

본 연구는 고지방을 급여한 마우스의 체내 지질개선 및 항산화 방어계에 미치는 갈대순의 영향을 구명하고자 하였다. 4주령의 ICR마우스(n=24)를 1주일간 적응시킨 후 정상식이를 급여한 정상군, 고지방을 급여한 고지방군, 고지방-갈대순분말 급여군으로 나누어 8주간 사육하였다. 갈대순분말은 사람이 하루에 3잔의 차를 마시는 양을 고려하여 식이에 1% 수준이 되도록 첨가 조제하여 급여하였다. 갈대순분말군의 체중, 일일 식이섭취량과 에너지섭취량은 고지방군에 비하여 감소하는 경향이었다. 갈대순분말 급여 시 혈장의 총 콜레스테롤 함량은 고지방군에 비하여 19% 감소되었고 중성지질 함량은 36% 유의적인 감소를 보였다. 갈대순분말은 고지방식이로 축적된 간 조직의 중성지질 함량 변화에는 영향을 미치지 않았으나 콜레스테롤 함량은 고지방군에 비하여 유의적으로 낮추었다. 심장조직의 중성지질과 콜레스테롤 함량 역시 정상군에 비하여 고지방군이 각각 145%, 112%의 유의적인 증가를 나타내었으나 갈대순분말 급여로 중성지질 함량은 감소경향을 보였으며 콜레스테롤 함량은 정상군과 유사한 수준으로 개선되었다. 갈대순분말은 고지방군에 비하여 분변으로의 중성지질과 콜레스테롤 배설을 각각 27%와 28% 유의적으로 증가시켰다. 갈대순분말은 간 조직의 지방산 산화에는 영향을 미치지 않았고 지방산 합성효소 활성을 유의적으로 억제하였다. 간 조직 중의 HMG-CoA reductase와 ACAT 활성도 역시 갈대순급여군이 고지방군에 비하여 유의적으로 낮았다. 적혈구 중의 SOD와 CAT 활성은 정상군에 비하여 고지방식이 급여 시 유의적인 증가를 보였으나 GSH-Px 활성은 고지방식이로 인한 변화가 관찰되지 않았다. 반면, 갈대순분말 급여는 적혈구의 SOD와 CAT 활성과 지질과산화물 함량을 고지방군에 비하여 유의적으로 낮추었다. 이와 같이 갈대순분말은 고지방식 이를 급여한 마우스의 간 조직에서의 지방산과 콜레스테롤 합성을 저해하고 분변으로의 지질배설을 증가시킴으로써 혈장 지질개선에 효과적이었으며 적혈구의 항산화 효소활성도와 지질과산화물 함량도 개선하는 것으로 나타났다.

Keywords

References

  1. Korean National Statistical Office. 2007. The cause of death statistics (death and death rates) “2005”.
  2. Hwangbo JH, Son YA, Shin SR, Yoon KS, Kim KS, Kim KS. 2002. Studies on the food and daily habits and lipid concentrations in serum of adult man. Food Ind Nutr 7: 45-50.
  3. Nam KH, Shin MS, Yoo JH, Bae JJ, Lee SH, Kim SS, Hong YS, Byun JJ, Park HK. 2003. The effect of exercise program during 16 weeks on leptin, $HbA_{\kappa}$, BMI and body composition in middle aged men obesity and NIDDM. J Sport Leis Stud 20: 1115-1126.
  4. Ahima RS, Flier JS. 2000. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11: 327-332. https://doi.org/10.1016/S1043-2760(00)00301-5
  5. Lee CB. 1980. An illustrated plant. Hyangmon press, Seoul, Korea. p 990.
  6. Kim CM, Yim YJ, Rim RD. 1972. Studies on the primary production of the Phragmites longivalvis community in Korea. IBP REP. No. 6. Korean National Committee for the IBP. p 1-7.
  7. Choi JS, Le JH, Young HS. 1995. Anti-hyperlipidemic effect of Phragmites communis and its active principles. J Korean Soc Food Nutr 24: 523-529.
  8. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  9. Johansson CG, Hallmer H. 1983. Rapid enzymatic assay of insoluble and soluble dietary fiber. J Agric Food Chem 31: 476-482. https://doi.org/10.1021/jf00117a003
  10. Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc 58: 966-968. https://doi.org/10.1007/BF02659771
  11. American Institute of Nutrition. 1977. Report of the American institute of nutrition ad hoc committee on standards for nutritional studies. J Nutr 107: 1340-1348. https://doi.org/10.1093/jn/107.7.1340
  12. Muller PH. 1977. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 15: 457-464.
  13. Richmond V. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 22: 1579-1588.
  14. Folch J, Mee L, Stanley GSH. 1975. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226: 497-509.
  15. McCord JM, Fridovich I. 1969. Superoxide dismutase: An enzymatic function for erythrocuprein (Hemocuprein). J Biol Chem 244: 6049-6055.
  16. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  17. Carl MN, Lakshmana MR, Porter JW. 1975. Fatty acid synthase from rat liver. Method Enzy 35: 37-44. https://doi.org/10.1016/0076-6879(75)35136-7
  18. Lazarow PB. 1981. Assay of peroxisomal ${\beta}$-oxidation of fatty acids. Methods Enzy 72: 315-319. https://doi.org/10.1016/S0076-6879(81)72021-4
  19. Shapiro DJ, Nordstrom JL, Mitschelen JJ, Rodwell VW, Schimke RT. 1974. Micro assay for 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts. Biochim Biophys Acta 370: 369-377. https://doi.org/10.1016/0005-2744(74)90098-9
  20. Erickson SK, Schrewsbery MA, Brooks C, Meyer DJ. 1980. Rat liver acyl-coenzyme A:cholesterol acyltransferase: its regulation in vivo and some of properties in vitro. J Lipid Res 21: 930-941.
  21. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  22. Aebi H. 1988. Catalase in vitro. Method Enzy 105: 121-126.
  23. Paglia ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 158-169.
  24. Tarladgis BG, Pearson AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agri 15: 602-607. https://doi.org/10.1002/jsfa.2740150904
  25. Papathanasopoulos A, Camilleri M. 2010. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology 138: 65-72. https://doi.org/10.1053/j.gastro.2009.11.045
  26. Ghasi S, Nwobodo E, Ofili JO. 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J Ethnopharmacol 69: 21-25. https://doi.org/10.1016/S0378-8741(99)00106-3
  27. Davignon J, Cohn JS. 1996. Triglyserides: A risk factor for coronary heart disease. Atherosclerosis 124: S57-S64. https://doi.org/10.1016/0021-9150(96)05858-3
  28. Cho YS, Shon MY, Lee MK. 2007. Lipid-lowering action of powder and water extract of mulberry leaves in C57BL/6 mice fed high-fat diet. J Korean Soc Food Sci Nutr 36: 405-410. https://doi.org/10.3746/jkfn.2007.36.4.405
  29. Yang EJ, Cho YS, Choi MS, Woo MN, Kim MJ, Shon MY, Lee MK. 2009. Effect of young barley leaf on lipid contents and hepatic lipid-regulating enzyme activities in mice fed high-fat diet. Korean J Nutr 42: 14-22.
  30. Smith S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J 8: 1248-1259. https://doi.org/10.1096/fasebj.8.15.8001737
  31. Lin JK, Lin-Shiau SY. 2006. Mechanism of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50: 211-217. https://doi.org/10.1002/mnfr.200500138
  32. Tian WX. 2006. Inhibition of fatty acid synthase by polyphenols. Curr Med Chem 13: 967-977. https://doi.org/10.2174/092986706776361012
  33. Halliwell B. 1996. Mechanisms involved in the generation of free radicals. Pathol Biol 44: 6-13.
  34. Clemens MR, Waller HD. 1987. Lipid peroxidation in erythrocytes. Chem Phys Lipids 45: 251-268. https://doi.org/10.1016/0009-3084(87)90068-5
  35. Stocker R, Frei B. 1991. Endogenous antioxidant defenses in human blood plasma. In Oxidative stress: oxidants and antioxidants. Academic Press, London, UK. p 213-243.
  36. Carrel R, Winterbourn C, Rachmilewitz F. 1975. Activated oxygen and hemolysis. Br J Haemat 20: 259.
  37. Pearson WR, Windle JJ, Morrow JF, Benson AM, Talalay P. 1983. Increased synthesis of glutathione S-transferases in response to anticarcinogenic antioxidants. Cloning and measurement of messenger RNA. J Biol Chem 258: 2052-2062.
  38. Mittal PC, Kant R. 2009. Correlation of increased oxidative stress to body weight in disease-free post menopausal women. Clin Biochem 42: 1007-1011. https://doi.org/10.1016/j.clinbiochem.2009.03.019
  39. Stefanovic A, Kotur-Stevuljevic J, Spasic S, Bogavac-Stanojevic N, Bujisic N. 2008. The influence of obesity on the oxidative stress status and the concentration of leptin in type 2 diabetes mellitus patients. Diabetes Res Clin Pract 79: 156-163. https://doi.org/10.1016/j.diabres.2007.07.019
  40. Cho YS, Jang EM, Jang SM, Chun MS, Shon MY, Kim MJ, Lee MK. 2007. Effect of grape seed water extract on lipid metabolism and erythrocyte antioxidant defense system in high-fat diet induced obese C57BL/6 mice. J Korean Soc Food Sci Nutr 36: 1537-1543. https://doi.org/10.3746/jkfn.2007.36.12.1537

Cited by

  1. Dietary effects of black bean fermented byMonascus pilosuson body weight, serum lipid profiles and activities of hepatic antioxidative enzymes in mice fed high fat diets vol.46, pp.1, 2013, https://doi.org/10.4163/kjn.2013.46.1.5
  2. Dietary Effects of Fermented Soybean Curd Residue (Biji) on Body Weight, Serum Lipid Profiles, and Antioxidation-Related Enzymes Activity of Mice Fed a High Fat Diet vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1043
  3. Physiochemical property of edible tissues (sprout and root) of steam-treated reed vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.482
  4. Young leaves of reed ( Phragmites communis ) suppress melanogenesis and oxidative stress in B16F10 melanoma cells vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.037
  5. Effect of fermented soybean curd residue (FSCR; SCR-meju) byaspergillus oryzaeon the anti-obesity and lipids improvement vol.46, pp.6, 2013, https://doi.org/10.4163/jnh.2013.46.6.493
  6. Effect of Soybean Curd Residue Fermented by Monascus pilosus on the High fat Diet-Induced Obese Mice vol.57, pp.1, 2014, https://doi.org/10.3839/jabc.2014.002
  7. Hepatotoxicity Reducing Effect of Ethanol Extracts from Fermented Youngia denticulata Houtt Kitamura in Ethanol-treated Rats vol.26, pp.5, 2016, https://doi.org/10.17495/easdl.2016.10.26.5.389
  8. Dietary Effects of Post-fermented Green Tea by Monascus pilosus on the Body Weight, Serum Lipid Profiles and the Activities of Hepatic Antioxidative Enzymes in Mouse Fed a High Fat Diet vol.55, pp.2, 2012, https://doi.org/10.3839/jabc.2011.064
  9. Effects of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed High-Fat Diet vol.26, pp.1, 2013, https://doi.org/10.9799/ksfan.2013.26.1.066
  10. Anti-stress and Anti-histamine Effects of Phragmites communis, Salicornia herbacea, and Prunus mume vol.14, pp.2, 2016, https://doi.org/10.20402/ajbc.2016.0029
  11. Development of Rose Sparkling Wine with Reed Root Extracts vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.666