Evaluation of the Secondary Particle Effect in Inhomogeneous Media for Proton Therapy Using Geant4 Based MC Simulation

Geant4 몬테칼로 시뮬레이션을 활용한 불균질 매질에서의 양성자의 이차입자 영향 분석

  • Park, So-Hyun (Department of Biomedical Engineering, Catholic University of Korea) ;
  • Jung, Won-Gyun (Department of Biomedical Engineering, Catholic University of Korea) ;
  • Rah, Jeong-Eun (Proton Therapy Center, National Cancer Center of Korea) ;
  • Park, Sung-Yong (Proton Therapy Center, National Cancer Center of Korea) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, Catholic University of Korea)
  • Received : 2010.08.13
  • Accepted : 2010.10.20
  • Published : 2010.12.31

Abstract

In proton therapy, the analysis of secondary particles is important due to delivered dose outside the target volume and thus increased potential risk for the development of secondary cancer. The purpose of this study is to analyze the influence of secondary particles from proton beams on fluence and energy deposition in the presence of inhomogeneous material by using Geant4 simulation toolkit. The inhomogeneity was modeled with the condition that the adipose tissue, bone and lung equivalent slab with thickness of 2 cm were inserted at 30% (Plateau region) and 80% (Bragg peak region) dose points of maximum dose in Bragg curve. The energy of proton was varied with 100, 130, 160 and 190 MeV for energy dependency. The results for secondary particles were presented for the fluence and deposited energy of secondary particles at inhomogeneous condition. Our study demonstrates that the fluence of secondary particles is neither influenced insertion of inhomogeneties nor the energy of initial proton, while there is a little effect by material density. The deposited energy of secondary particles has a difference in the position placed inhomogeneous materials. In the Plateau region, deposited energy of secondary particles mostly depends on the density of inserted materials. Deposited energy in the Bragg region, in otherwise, is influenced by both density of inserted material and initial energy of proton beams. Our results suggest a possibility of prediction about the distribution of secondary particles within complex heterogeneity.

양성자 치료 시, 이차 입자는 암 부위 이외의 영역에 선량을 전달하고 이차 암 발생 가능성을 내재하기 때문에 이에 대한 정확한 분석은 중요한 역할을 한다. 본 연구의 목적은 불균질 물질에 의해 양성자 빔으로부터 발생 된 이차입자의 플루언스와 에너지 분포가 받는 영향에 대해 Geant4 (Geometry And Tracking) 전산모사를 통해 분석 하는 것이다. 불균질 조건은 브래그 커브 내에 최대 선량의 30% (플라토)와 80% (브래그 피크) 선량 지점에 두께 2 cm의 지방, 뼈 그리고 폐 등가 물질을 삽입하여 구성하였다. 또한, 양성자의 에너지는 100, 130, 160 그리고 190 MeV로 변화시켰으며, 이차 입자에 대한 결과는 불균질 물질에서의 이차입자의 플루언스와 에너지 분포로 나타내었다. 이차입자의 플루언스는 불균질 물질의 밀도에 적은 영향을 받지만, 삽입위치, 양성자의 초기 에너지에 따라서는 영향을 받지 않는다. 이차입자의 에너지 분포는 불균질 물질의 삽입 위치에 따라 다르다. 플라토 영역 내에서 이차입자의 에너지 분포는 물질의 밀도에 영향을 받지만, 브래그 영역 내에서는 불균질 물질의 밀도와 양성자의 초기 에너지에 영향을 받는다. 본 연구는 더욱 복잡한 불균질 물질에서의 이차입자의 분포에 대한 예측 가능성을 내제한다.

Keywords

References

  1. Ciangaru G, Polf JC, Bues M, et al: Benchmarking analytical calculation of proton doses in heterogeneous matter. Med Phys 32:3511-3523 (2005) https://doi.org/10.1118/1.2064887
  2. Gonzalez-Munoz G, Tilly N, Fernandez-Zerea JM, et al: Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak. Phys Med Biol 53:2857-2875 (2008) https://doi.org/10.1088/0031-9155/53/11/007
  3. Paganetti H. Monte Carlo method to study the proton fluence for treatment planning. Med Phys 25:2370-2375 (1998) https://doi.org/10.1118/1.598447
  4. Zheng Y, Fontenot J, Taddei P, et al: Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Phys Med Biol 53:187-201 (2008) https://doi.org/10.1088/0031-9155/53/1/013
  5. Geant4 Physics Reference Manual, Geant4 User's Documents, January 2010. http://wwwasd.web.cern.ch/wwwasd/geant4/G4Users- Documents/UsersGuides/PhysicsReferenceManual/html/Physics- ReferenceManual.html
  6. Cornelius I, Rosenfeld A, Bradley P, et al: Simulations of microdosimetry measurements in fast neutron therapy. Phys Eng Sci Med 25:168-171 (2002) https://doi.org/10.1007/BF03178290
  7. Lax I: Inhomogeneity corrections in electron-beam dose planning. Limitations with semi-infinite slab approximation. Phys Med Biol 31:879-892 (2002)
  8. Paganetti H: Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 47:747-764 (2002) https://doi.org/10.1088/0031-9155/47/5/305
  9. Urie M, Goitein M, Holley WR, et al: Degradation of the Bragg peak due to inhomogeneities. Phys Med Biol 31:1-15 (1986) https://doi.org/10.1088/0031-9155/31/1/001
  10. Schneider U, Schaffner B, Lomax T, et al: A technique for calculating range spectra of charged particle beams distal to thick inhomogeneities. Phys Med Biol 25:457-463 (1998) https://doi.org/10.1118/1.598220
  11. Verhaegen F, Palmans H: Secondary electron fluence perturbation by high-Z interfaces in clinical proton beams: a Monte Carlo study. Phys Med Biol 44:167-183 (1999) https://doi.org/10.1088/0031-9155/44/1/013
  12. Bortfeld T: An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 24:2024-2033 (1977)
  13. Szymanowski H, Oelfke U: Two-dimensional pencil beam scaling: an improved proton dose algorithm for heterogeneous media. Phys Med Biol 47:3313-3330 (2002) https://doi.org/10.1088/0031-9155/47/18/304
  14. Goitein MA: technique for calculating the influence of thin inhomogeneities on charged particle beams. Med Phys 5:258-264 (1978) https://doi.org/10.1118/1.594507
  15. Schneider U, Agosteo S: Secondary neutron dose during proton therapy using spot scanning. Radiation Oncology Boil Phys 53:244-251 (2002) https://doi.org/10.1016/S0360-3016(01)02826-7