DOI QR코드

DOI QR Code

Preparation and Properties of Soybean Lecithin Liposome using Supercritical Reverse Phase Evaporation Method

초임계 역상 증발법을 이용한 대두 레시틴 리포좀의 제조 및 특성

  • Received : 2010.08.28
  • Accepted : 2010.12.03
  • Published : 2010.12.31

Abstract

Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of $0.1\sim0.25{\mu}m$, while that of CNA-I shows large unilamellar liposomes with diameter of $0.2\sim1.2{\mu}m$. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.

Keywords

References

  1. S. J. Hong, D. R. Kim, I. J. Yoon and K. W. Kang, "Fatty Acid Analysis from Leech Skin", J. Biochem. mol. Biol., 28(3), 261 (1995).
  2. M. Schmit and M. Kietzmann, "Skin penetration properties of cosmetic formulations using a perfused bovine udder model", J. Cosmet. Sci., 50, 147(1999).
  3. E. P. Guemiu and J. L. Zatz, "Interaction of skin with surfactant Vesicle Component", J. Soc. Cosmet. Chem., 46, 77 (1995).
  4. A. D. Banghan, M. M. Standish and T. C. Watkins, "Diffusion of Univalent lons across the Lamella of Swollen Phospholipids", J. Mol. Biol., 13, 238 (1965). https://doi.org/10.1016/S0022-2836(65)80093-6
  5. K. Balon, B. U. Riebesehl and B. W. Mueller, "Determination of liposome partitioning of ionizable drugs by titration", J. Pharm. Sci., 88(8)., 802 (1999). https://doi.org/10.1021/js9804213
  6. M, Colic and D. Morse, "The elusive mechanism of the magnetic 'memory' of water", Collides and surfaces A, 154, 167 (1999). https://doi.org/10.1016/S0927-7757(98)00894-2
  7. M. T. Montero, J. Hernandez-Borrel and K. M. W. Keough, "Fluoro quinolone-biomembrane Interactions : Monolayer and Calorimetric Studies", Langmuir, 14, 2451 (1998). https://doi.org/10.1021/la9706882
  8. Y. Kaneda, "Virosomes ; evolution of the liposome as a targeted drug delivery system", advanced Drug Delivery Reviews, 43, 197 (2000). https://doi.org/10.1016/S0169-409X(00)00069-7
  9. J. Marjan, Z. Xie and D. V. Devine, "Liposome-induced activation of the classical complement pathway does not require immunoglobulin", Biochim. et Biophys. Act, 1192, 35 (1994). https://doi.org/10.1016/0005-2736(94)90140-6
  10. H. Yamauchi, H. Kikuchi, M. Sawada, M. Tomikaea and S. Hirota, "Characterization and tissue distribution of liposomes containing lactonse mono-fatty acid derivatives", J. Microencapsulation, 11 (2), 179-188 (1994). https://doi.org/10.3109/02652049409040449
  11. K. Yachi, H. Kikuchi, H. Yamauchi, S. Hirota and M. Tomikawa, "Districution of liposomes containg mannobiose esters of fatty acid in rats", J. Microencap., 12, 377 (1995). https://doi.org/10.3109/02652049509087250
  12. D, Lasic, F. Martin, "Stealth Liposomes", CRC Press, Boca Raton, EL (1995).
  13. K. Maruyama, S. Okuizumi, O. Ishida, H. Yamauchi, H. Kikuch and M. Iwatsuru, "Phosphatidyl polyglycerols prolong liposome circulation in vivo", Inter. T. of Pharm., 111, 103 (1994). https://doi.org/10.1016/0378-5173(94)90407-3
  14. A. Hayshi, T. Nakanishi, S. Nakagawa and T. Mayumi, "The application of drug delivery system to cancer immunotherapy", Drug Delivery System, 15-1, 49 (2000). https://doi.org/10.2745/dds.15.49
  15. M. Nishikawa and L. Hwang, "gene therapy and drug delivery system - Overview", Drug Delivery System, 15-2, 80 (2000). https://doi.org/10.2745/dds.15.80
  16. S. Batzry and E. D. Korn, "Single Bioayer Liposomes Prepared without Sonication", Biochim. et Biophys. Acta, 298, 1015 (1973). https://doi.org/10.1016/0005-2736(73)90408-2
  17. D. Deamer and A. D. Bangham, "Large Volume Liposomes by an Ether Vaporization Method", Biochim. et Biophys. Acta, 443, 629 (1976). https://doi.org/10.1016/0005-2736(76)90483-1
  18. G. Szoka and D. Papahadjopoulos, "Procedure for preparation of liposomer with large internal agueous space and high capture by reverse-phase evaporetion", Proc. Natl. Acad. Sci., USA, 75 (9), 4194 (1978). https://doi.org/10.1073/pnas.75.9.4194
  19. T. Imure, K. Otake, S. Hashimoto, T. Gotoh, M. Yuasa, S. Yokoyama, H. Sakai, J. F. Rathman and M. Abe, "Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method", Colloid and Surfaces B; Biointerfaces 27, 133 (2002).
  20. C. E. Bunker, H. W. Rollins, J. R. Gord and Y. P. Sun, "Efficient Photodimerization Reaction of Anthracene in Supercritical Carbon Dioxide", J. Org. Chem., 62, 7324 (1997). https://doi.org/10.1021/jo970889a
  21. J. H. Heo, S. Y. Kim, H. S. Kim and K. P. Yoo, "Enzymatic preparation of a carbohydrate ester of medium-chain fatty acid in supercritical carbon dioxide", Biotechnology Letters, 22, 995 (2000). https://doi.org/10.1023/A:1005689204551
  22. K. Otake, T. Imura, H. Sakai and M. Abe, "Development of a new preparation method of liposomes using supercritical carbon dioxide", Langmuir, 17, 3898 (2001). https://doi.org/10.1021/la010122k
  23. I. Miwa, J. Okuda, K. Maeda and G. Okuda, "Mutarotase effect on colorimetric determination of blood glucose with $\beta$ -D-glucose oxidase", Clin. Clim. Acta, 37, 538 (1972). https://doi.org/10.1016/0009-8981(72)90483-4
  24. L. Montanari, P. Fantozzi, M. J. Snyder and W. J. King, "Selective extraction of phospholipids from soybeans with supercritical carbon dioxide and ethanol", J. Supercritical Fluids, 14, 87 (1999). https://doi.org/10.1016/S0896-8446(98)00110-7