컬럼실험을 통한 바텀애쉬 및 폐타이어의 용출특성 평가

Evaluation of Leaching Characteristics of Bottom Ash and Waste Tire

  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University) ;
  • Koh, Tae-Hoon (Korea Railroad Research Institute, Railroad Structure Research Department) ;
  • Sa, Kong-Myong (Korea Railroad Research Institute, Railroad Structure Research Department) ;
  • Lee, Sung-Jin (Korea Railroad Research Institute, Railroad Structure Research Department) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2010.02.07
  • 심사 : 2010.07.08
  • 발행 : 2010.07.31

초록

본 연구는 화력발전소에서 발생한 바텀애쉬와 폐타이어를 성토재로 사용하기 전 환경에 미치는 영향을 파악하기 위해 수행되었다. 바텀애쉬에 대해서는 3가지 초기 pH 4, 6, and 8 조건에서 실험하였고, 폐타이어와 바컴애쉬 폐타이어 혼합물은 pH 4 조건에서 실험하였다. 7가지 중금속 중 Pb과 Zn이 먹는물 수질기준을 초과하였으나 1 PVE안에 모두 기준을 만족하였다. 5가지 음이온 중 황산염의 농도만 기준치의 최대 10배 정도로 크게 검출이 되었으며 높은 분배계수로 인해 수질기준치 이하로 낮아지는 데 걸리는 시간도 최대 8.21 PVE에 달하였다. 혼합물의 경우 바텀애쉬와 비교 시 중금속 및 음이온의 농도를 낮추었으며 요구되는 PVE도 8.21에서 5.89로 낮추는 효과가 있었다.

The purpose of this study was to determine any detrimental effects on surrounding environments by using bottom ash, waste tire, and mixture as a fill material to raise the ground level. Three different initial pHs (4, 6, 8) were applied to bottom ash and initial pH of 4 was used to waste tire and mixture. Among 7 heavy metals, Pb and Zn were exceeded drinking water standards but their concentrations decreased below drinking water standards within 1 PVE. Among 5 anions, sulfate exceeded 10 times of drinking water standards and further higher partition coefficients resulted in increased PVE of 8.21. For the mixture of bottom ash and waste tire, its concentrations of heavy metals and anions were decreased due to the dilution effect and lowered PVE from 8.21 (BA) to 5.89.

키워드

과제정보

연구 과제 주관 기관 : 기상청

참고문헌

  1. Cheriaf, M., Rocha, J. and Pera, J., "Pozzolanic properties of pulverized coal combustion bottom ash," Cem. Concr. Res., 29(9), 1387-1391(1999). https://doi.org/10.1016/S0008-8846(99)00098-8
  2. Churchill, E. V. and Amirkhanian, S. N., "Coal ash utilization in asphalt concrete mixtures," J. Mater. Civil Eng., 11(4), 295-301(1999). https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(295)
  3. Kayabali, K. and Bulus, G., "The usability of bottom ash as an engineering material when amended with different matrices," Eng. Geol., 56(3-4), 293-303(2000). https://doi.org/10.1016/S0013-7952(99)00097-6
  4. Kim, B. and Prezzi, M., "Compaction characteristics and corrosivity of Indiana class-F fly and bottom ash mixtures," Construction and Building Materials, 22(4), 694-702(2008). https://doi.org/10.1016/j.conbuildmat.2006.09.007
  5. Kurama, H. and Kaya, M., "Usage of coal combution bottom ash in concrete mixture," Construction and Building Materials, 22(9), 1922-1928(2008). https://doi.org/10.1016/j.conbuildmat.2007.07.008
  6. Andrade, L. B., Rocha, J. C. and Cheriaf, M., "Influence of coal bottom ash as fine aggregate on fresh properties of concrete," Construction and Building Materials, 23(2), 609-614(2009). https://doi.org/10.1016/j.conbuildmat.2008.05.003
  7. Kurama, H., Topcu, I. B. and Karakurt, C., "Properties of the autoclaved aerated concrete produced from coal bottom ash," J. Mater. Proc. Technol., 209(2), 767- 773(2009). https://doi.org/10.1016/j.jmatprotec.2008.02.044
  8. Park, S., Jang, Y., Lee, J. and Lee, B., "An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea," J. Hazard. Mater., 166(1), 348-355(2009). https://doi.org/10.1016/j.jhazmat.2008.11.054
  9. Trifunovic, P. D., Marinkovic, S. R., and Tokalic, R. D., "Matijasevic, S. D., The effect of the content of unburned carbon in bottom ash on its applicability for road construction," Thermochim. Acta, 498(1-2), 1-6(2010). https://doi.org/10.1016/j.tca.2009.10.022
  10. Fytianos, K. and Schroder, H., "Determination of polychlorinated dibenzodioxins and dibenzofurans in fly ash," Chromatographia, 46(4), 280-284(1997). https://doi.org/10.1007/BF02496319
  11. Wang, Y., Ren, D. and Zhao, F., "Comparative leaching experiments for trace elements in raw coal, laboratory ash, fly ash and bottom ash," Int. J. Coal Geology, 40(2-3), 103-108(1999). https://doi.org/10.1016/S0166-5162(98)00062-7
  12. Hansen, Y., Notten, P. and Petrie, J., "The environmental impact of ash management in coal-based power generation," Appl. Geochem., 17(8), 1131-1141(2002). https://doi.org/10.1016/S0883-2927(02)00013-6
  13. Jin, H., Kang, Y. and Park, J., "Leaching characteristics of coal-fired bottom ash and its stabilization/solidification products using waste lime," KSEE, 24(3), 389-399(2002).
  14. Vassilev, S. V., Vassileva, C. G., Karayigit, A. I., Bulut, Y., Alastuey, A. and Querol, X., "Phase-mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey," Int. J. Coal Geology, 61(1-2), 35-63(2005). https://doi.org/10.1016/j.coal.2004.06.004
  15. Shah, P., Strezov, V, Prince, K. and Nelson, P., "Speciation of As, Cr, Se and Hg under coal fired power station conditions," FUEL, 87(10-11), 1859-1869(2008). https://doi.org/10.1016/j.fuel.2007.12.001
  16. Wang, W., Qin, Y., Song, D. and Wang, K., "Column leaching of coal and its combustion residues," Int. J. Coal Geology, 75(2), 81-87(2008). https://doi.org/10.1016/j.coal.2008.02.004
  17. Skodras, G., Grammelis, P., Prokopidou, M., Kakaras, E. and Sakellaropoulos, G., "Chemical, leaching and toxicity characteristics of CFB combustion residues," FUEL, 88(3), 1201-1209(2009). https://doi.org/10.1016/j.fuel.2007.06.009
  18. Eisenberg, S., Tittlebaum, M., Eaton, H. and Soroczak, M., "Chemical characteristics of selected fly ash leachates," J. Environ. Sci. Health, 21(3), 383-402(1986).
  19. Gutierrez, B., Pazos, C. and Coca, J., "Characterization and leaching of coal fly ash," Waste Manage. Res., 11(2), 279-286(1993). https://doi.org/10.1177/0734242X9301100402
  20. Fytianos, K., Tsaniklidi, E. and Voudrias, E., "Leachability of heavy metals in Greek fly ash from coal combustion," Environ. Int., 24, 477-486(1998). https://doi.org/10.1016/S0160-4120(98)00027-0
  21. 대한타이어공업협회 : http://www.kotma.or.kr/tire(2009).
  22. Yoon, Y., Heo, S. and Kim, K., "Geotechnical performance of waste tires for soil reinforcement from chamber tests," Geotextiles and Geomembrances, 26(1), 100-107(2008). https://doi.org/10.1016/j.geotexmem.2006.10.004
  23. Humphrey, D. and Manion, W., "Properties of tire chips for light weight fill, Grouting, Soil Improvement and Geosynthetics," Geotechnical Special Publication, 2(30), ASCE, New York, NY, pp. 1345-1355(1992).
  24. Foose, G., Benson, C. and Boscher, P., "Sand reinforced with shredded waste tire," J. Geotech. Eng., ASCE, 122, 760-767(1996). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760)
  25. Humphrey, D., Whetten, N., Weaver, J. and Recker, K., Cosgrove, T., "Tire shreds as lightweight fill for embankments and retaining walls, Recycled Materials in Geotechnical Applications," Geotechnical Special Publications, 79, 51-65(1998).
  26. Reid, R., Soupir, S. and Schaefer, V., "Mitigation of void development under bridge approach slabs using rubber tire chips, Recycled Materials in Geotechnical Applications," Geotechnical Special Publications, 79, 37-50(1998).
  27. Yoon, Y., Moon, C. and Kim, G., "Utilization of Waste Tires as Soil Reinforcement; (2) Environmental Effects," Journal of Korean Geotechnical Engineering, 20(3), 119-128(2004).
  28. Williams. P., Besler, S. and Taylor, D., "The pyrolysis of scrap automotive tyres: the influence of temperature and heating rate on product composition," Fuel, 69, 1474-1482 (1990). https://doi.org/10.1016/0016-2361(90)90193-T
  29. U.S. EPA Method 3051A, Microwave Assisted Acid Digestion of sediments, sludges, soils, and oils, Test methods for evaluating soild waste, physical/chemical Methods, SW-846, 3rd ed., Environmental Protection Agency, Washington, DC(1994).
  30. Lee, T., Park, J. and Lee, J., "Waste green sands as reactive media for the removal of zinc from water," Chemosphere, 56(9), 571-581(2004). https://doi.org/10.1016/j.chemosphere.2004.04.037
  31. Lee, T. and Benson, C., "Leaching Behavior of Green Sands from Gray-Iron Foundries Used for Reactive Barrier Applications," Environ. Eng. Sci., 23(1), 156-170(2006). https://doi.org/10.1089/ees.2006.23.156
  32. Lee, T., Benson, C. and Eykholt, G., "Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE)," J. Hazard. Mater., B109(1), 25-36(2004).
  33. Shackelford, C. and Glade, M., "Analytical Mass Leaching Model for Contaminated Soil and Soil Stabilized Waste," Ground Water, 35(2), 233-242(1997). https://doi.org/10.1111/j.1745-6584.1997.tb00080.x