Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor

정수처리용 생물활성탄(BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성

  • Son, Hee-Jong (Busan Water Authority) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park) ;
  • Choi, Young-Ik (Department of Environmental Engineering, Dong-A University) ;
  • Jang, Seong-Ho (Department of Environment System Engineering, Pusan National University)
  • 손희종 (부산광역시 상수도사업본부) ;
  • 정철우 (울산산업진흥TP 전략산업기획단) ;
  • 최영익 (동아대학교 환경공학과) ;
  • 장성호 (부산대학교 지역환경시스템공학과)
  • Received : 2010.04.14
  • Accepted : 2010.07.20
  • Published : 2010.07.31

Abstract

In this study, three different biological activated carbons (BACs) were prepared from activated carbons made of each coal (F400, Calgon), coconut (Samchully) and wood(Pica, Picabiol) which were run for two and half years in the pilot plant. The attached bio-film microorganisms in and on the BACs were isolated and identified. The results showed that nine different bacteria species (Chryseomonas luteola, Stenotrophomonas maltophilia, Pseudomonas vesicularis, Aeromonas hydrophila, Spingomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas fluorescens, Spirillum spp., and Pasteurella haemolytica) were isolated and identified, the dominant species was Pseudomonas sp. that had occupied 56.5%. More specifically, it was observed that the populations of the microorganisms deceased in the order: Pasteurella haemolytica (18.9%) > Chryseomonas luteola (4.0%) > Agrobacterium radiobacter (3.5%) > Aeromonas hydrophila (2.0%) in and on the BACs. After isolating of 9 species of biofilm microorganisms, the growth curve for the biomass was investigated. During 24~96 hours, the biomass has the highest concentration, and activity of the biomass was the best to uptake geosmin as carbon resources. The operation temperatures for investigating the biodegradation of geosmin were set at $4^{\circ}C$ and $25^{\circ}C$. Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter and Stenotrophomonas maltophilia played a maior role in removing the target compound as geosmin. However, geosmin was not biodegraded well by Chryseomonas luteola, Spingomonas paucimobilis, and Spirillum spp.. It is also interesting to evaluate kinetics of biodegradability of geosmin. The first-order rate constants for biodegradability of geosmin at $4^{\circ}C$ and $25^{\circ}C$ were $0.00006{\sim}0.0002\;hr^{-1}$ and $0.0043{\sim}0.0046\;hr^{-1}$ respectively. Higher water temperature produced better geosmin removal rates. When concentrations of geosmin increased from 10 to 10,000 ng/L, the rate constants for biodegradability of geosmin increased from 0.0003 to $0.0882\;hr^{-1}$. As described earlier, higher geosmin concentration in the reactor produced higher rate constant.

3가지 재질의 생물활성탄 부착 박테리아들을 부리 동정한 결과 총 9종류의 부착 박테리아가 동정되었다. Pseudomonas 속이 차지하는 비율이 평균 56.5%로 나타나 가장 높은 우점비율을 나타내었고, 다음으로 Pasteurella속 18.9%, Chryseomonas 속 4.0%, Agrobacterium속 3.5%, Aeromonas속 2.0% 순으로 검출되었다. 순수 분리된 9종의 박테리아들의 성장곡선을 조사한 결과 24~96시간 내에 최대의 생체량을 나타내어 geosmin을 유기탄소원으로 활용하는 능력이 뛰어난 것으로 조사되었다. $4^{\circ}C$$25^{\circ}C$의 운전조건에서 geosmin에 대한 생분해능을 조사한 결과 Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter 및 Stenotrophomonas maltophilia 등이 뛰어난 생분해율을 나타낸 반면 Chryseomonas luteola, Spingomonas paucimobilis, Spirillum spp. 등은 비교적 낮은 geosmin 생분해능을 나타내었다. Geosmin의 생분해능은 수온이 $4^{\circ}C$일 경우 생분해율 속도상수가 $0.00006{\sim}0.00020\;hr^{-1}$의 범위에서 $25^{\circ}C$에서는 $0.0043{\sim}0.0046\;hr^{-1}$의 범위로 나타나 수온 상승에 따라 큰 폭으로 증가하였으며, 또한 투입된 geosmin의 농도가 10~10,000 ng/L로 증가할수록 생분해율 속도상수도 $0.0003{\sim}0.0882\;hr{-1}$로 증가하였다.

Keywords

References

  1. Suffet, I. H., Mallevialle, J. and Kawczynski, E., Advances in Taste-and-Ordor Treatment and Control, AWWARF, Denver, Colorado(1995).
  2. Bruce, D., Westerhoff, P. and Brawley-Chesworth, A., "Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona," J. Water Supply: Research and Technoogy-Aqua, 51(4), 183-197(2002).
  3. Herzing, D. R., Snoeyink, V. L. and Wood, N. F., "Activated carbon adsorption of odorous compounds 2-methylisoborneol and geosmin," J. AWWA., 69(4), 223-231(1977). https://doi.org/10.1002/j.1551-8833.1977.tb06721.x
  4. 김영웅, 손희종, 유명호, 이춘식, 조인철, 김은호, 성낙창, "정수처리공정 중 침전지 부착조류 특성과 이취발생에 관한 연구," 대한환경공학회지, 22(5), 887-894(2000).
  5. Suffet, I. H., Corado, A., Chou, D., McGuire, M. J. and Butterworth, S., "AWWA taste and odor survey," J. AWWA., 88, 168-180(1996). https://doi.org/10.1002/j.1551-8833.1996.tb06542.x
  6. Rashash, D. M. C., Dietrich, A. M. and Hoehn, R. C., "FPA of selected odorous compounds," J. AWWA., 89, 131-141 (1997). https://doi.org/10.1002/j.1551-8833.1997.tb08213.x
  7. Lalezary, S., Pirbazari, M. and McGuire, M. J., "Evaluating activated carbons for removing low concentrations of tasteproducing and odor-producing organics," J. AWWA., 78(11), 76-82(1986).
  8. 이화자, 손희종, 노재순, 이상원, 지기원, 유평종, 강임석, "오존과 과산화수소를 이용한 이취미 물질 산화 제거," 대한환경공학회지, 28(12), 1323-1330(2006).
  9. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L. and Aieta, E. M., "Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms," J. AWWA., 82(4), 181-191(1990). https://doi.org/10.1002/j.1551-8833.1990.tb06950.x
  10. 이화자, 손희종, 이철우, 배상대, 강임석, "활성탄 재질과 사용연수에 따른 geosmin과 MIB 흡착특성," 대한환경공학회지, 29(4), 404-411(2007).
  11. 손동민, 강임석, 손희종, 이화자, "생물활성탄(BAC) 공정을 이용한 이취미물질(geosmin, 2-MIB)의 생분해 특성평가," 대한상하수도학회지, 23(2), 189-198(2009).
  12. Namkung, E. and Rittmann, B. E., "Removal of taste and odour-causing compounds by biofilms grown on humic substances," J. AWWA., 79(7), 107(1987).
  13. McDowall, B., Hoefel, D., Newcombe, G., Saint, C. P. and Ho, L., "Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria," Water Res., 43, 433-440(2009). https://doi.org/10.1016/j.watres.2008.10.044
  14. Elhadi, S. L. N., Huck, P. M. and Slawson, R. M., "Impact of biomass concentrations on the removal of earthy/musty odors from drinking water by biological filters," Proceedings of 2004 AWWA Annual Conference, June 13-17, Orlando, Florida(2004).
  15. Meyer, K. J., Summers, R. S., Westerhoff, P. and Metz, D., "Biofiltration for geosmin and MIB removal," Proceedings of 2005 AWWA Annual Conference, June 12-16, San Francisco, California(2005).
  16. 손희종, 유수전, 노재순, 유평종, "정수처리에서의 생물활성탄 공정," 대한환경공학회지, 31(4), 308-323(2009).
  17. 손희종, 박홍기, 이수애, 정은영, 정철우, "생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성," 대한환경공학회지, 27(12), 1311-1320(2005).
  18. Langmark, J., Storey, M. V., Ashbolt, N. J. and Stenström, T. A., "Artificial groundwater treatment: biofilm activity and organic carbon removal performance," Water Res., 38, 740-748(2004). https://doi.org/10.1016/j.watres.2003.10.021
  19. Krieg, N. R. and Holt, J. G., Bergey's Manual of Systematic Bacteriology. Williams & Wilins. Baltimore(1984).
  20. Goel, S., Hozalski, R. M. and Bouwer, E. J., "Biodegradation of NOM: effect of NOM source and ozone dose," J. AWWA., 87(1), 90-105(1995).
  21. Benanou, D., Acobas, F., Roubin, M. R., David, F. and Sandra, P., "Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction-thermal desorption-capillary GC/MS olfactometry," Anal. Bioanal. Chem., 376, 69-77(2003). https://doi.org/10.1007/s00216-003-1868-3
  22. 長澤, "粒狀活性炭表層のおける微生物の動向," 第41回 日本水道硏究發表會 發表論文集, 1-3(1990).
  23. APHA, AWWA, WEF, "Heterotrophic plate count," Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35(1995).
  24. Fuhrman, J. A. and Azam, F., "Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results," Mar. Biol., 66, 109-120(1982). https://doi.org/10.1007/BF00397184
  25. Parsons, T. R., Maita, Y. and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984).
  26. Bell, R. T., Ahlgren, G. M. and Ahlgren, I., "Estimating bacterioplankton production by the $[^3H]thymidine$ incorporation in a eutrophic Swedish Lake," Appl. Environ. Microbiol., 45, 1709-1721(1983).
  27. McRae, B. M., LaPara, T. M., and Hozalski, R. M., "Biodegradation of haloacetic acids by bacterial enrichment cultures," Chemosphere, 55, 915-925(2004). https://doi.org/10.1016/j.chemosphere.2003.11.048