DOI QR코드

DOI QR Code

Heterologous Production of Pediocin PA-1 in Lactobacillus reuteri

  • Eom, Ji-Eun (Department of Biotechnology, Chungju National University) ;
  • Moon, Sung-Kwon (Department of Biotechnology, Chungju National University) ;
  • Moon, Gi-Seong (Department of Biotechnology, Chungju National University)
  • Received : 2010.03.15
  • Accepted : 2010.05.06
  • Published : 2010.08.28

Abstract

The recombinant DNA pLR5cat_PSAB, in which pediocin PA-1 structural and immunity genes (pedAB) fused with the promoter and deduced signal sequence of an ${\alpha}$-amylase gene from a bifidobacterial strain were inserted in Escherichia coli-lactobacilli shuttle vector pLR5cat, was transferred to Lactobacillus reuteri KCTC 3679 and the transformant presented bacteriocin activity. The recombinant L. reuteri KCTC 3679 transformed with the shortened pLR5cat(S)_PSAB, where a nonessential region for the lactobacilli replicon was removed, also showed bacteriocin activity. The molecular mass of the secreted pediocin PA-1 from the recombinant bacteria was the same as that of native pediocin PA-1 (~4.6 kDa) from Pediococcus acidilactici K10 on a sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel. In cocultures with Listeria monocytogenes, the recombinant L. reuteri KCTC 3679 effectively reduced the viable cell count of the pathogenic bacterium by a 3 log scale compared with a control where L. monocytogenes was incubated alone.

Keywords

References

  1. Asaduzzaman, S. M. and K. Sonomoto. 2009. Lantibiotics: Diverse activities and unique modes of action. J. Biosci. Bioeng. 107: 475-487. https://doi.org/10.1016/j.jbiosc.2009.01.003
  2. Chen, Y., R. Shapira, M. Eisenstein, and T. J. Montville. 1997. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl. Environ. Microbiol. 63: 524-531.
  3. Doleyres, Y., P. Beck, S. Vollenweider, and C. Lacroix. 2005. Production of 3-hydroxypropionaldehyde using a two-step process with Lactobacillus reuteri. Appl. Environ. Microbiol. 68: 467-474.
  4. Drider, D., G. Fimland, Y. Héchard, L. M. McMullen, and H. Prévost. 2006. The continuing story of class II a bacteriocins. Microbiol. Mol. Biol. Rev. 70: 564-582. https://doi.org/10.1128/MMBR.00016-05
  5. Galvez, A., H. Abriouel, R. L. López, and N. Ben Omar. 2007. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51-70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
  6. Gillor, O., L. M. Nigro, and M. A. Riley. 2005. Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr. Pharm. Des. 11: 1067-1075. https://doi.org/10.2174/1381612053381666
  7. Ma, D., P. Forsythe, and J. Bienenstock. 2004. Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect. Immun. 72: 5308-5314. https://doi.org/10.1128/IAI.72.9.5308-5314.2004
  8. Miller, K. W., P. Ray, T. Steinmetz, T. Hanekamp, and B. Ray. 2005. Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett. Appl. Microbiol. 40: 56-62. https://doi.org/10.1111/j.1472-765X.2004.01627.x
  9. Moon, G. S., Y. R. Pyun, and W. J. Kim. 2005. Characterization of the pediocin operon of Pediococcus acidilactici K10 and expression of His-tagged recombinant pediocin PA-1 in Escherichia coli. J. Microbiol. Biotechnol. 15: 403-411.
  10. Moon, G. S., Y. R. Pyun, M. S. Park, G. E. Ji, and W. J. Kim. 2005. Secretion of recombinant pediocin PA-1 by Bifidobacterium longum, using the signal sequence for bifidobacterial α-amylase. Appl. Environ. Microbiol. 71: 5630-5632. https://doi.org/10.1128/AEM.71.9.5630-5632.2005
  11. Moon, G. S., Y. R. Pyun, and W. J. Kim. 2006. Expression and purification of a fusion-typed pediocin PA-1 in Escherichia coli and recovery of biologically active pediocin PA-1. Int. J. Food Microbiol. 108: 136-140. https://doi.org/10.1016/j.ijfoodmicro.2005.10.019
  12. Moon, G. S., Y. D. Lee, and W. J. Kim. 2008. Screening of a novel lactobacilli replicon from plasmids of Lactobacillus reuteri KCTC 3678. Food Sci. Biotechnol. 17: 438-441.
  13. Papagianni, M. and S. Anastasiadou. 2009. Pediocins: The bacteriocins of Pediococcus. Sources, production, properties and applications. Microb. Cell Fact. 8: 3. https://doi.org/10.1186/1475-2859-8-3
  14. Rodríguez, J. M., M. I. Martínez, and J. Kok. 2002. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42: 91-121. https://doi.org/10.1080/10408690290825475
  15. Saxelin, M., S. Tynkkynen, T. Mattila-Sandholm, and W. M. de Vos. 2005. Probiotic and other functional microbes: From markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211. https://doi.org/10.1016/j.copbio.2005.02.003
  16. Wu, C. M., C. F. Lin, Y. C. Chang, and T. C. Chung. 2006. Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri. Biosci. Biotechnol. Biochem. 70: 757-767. https://doi.org/10.1271/bbb.70.757

Cited by

  1. Increased Bacteriocin Activity of a Recombinant Pediococcus acidilactici vol.21, pp.6, 2010, https://doi.org/10.1007/s10068-012-0238-3
  2. Bacterial cell factories for recombinant protein production; expanding the catalogue vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2859-12-113
  3. 빈카 마이너 추출물의 항균 및 면역활성 연구 vol.32, pp.1, 2010, https://doi.org/10.12925/jkocs.2015.32.1.108
  4. Biological Effects of Vinca minor extract; Tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity in keratinocytes vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.788
  5. Enterococcus faecium CJNU 2008 균주 생산 박테리오신의 특성 규명 vol.33, pp.6, 2010, https://doi.org/10.13103/jfhs.2018.33.6.516