DOI QR코드

DOI QR Code

Effects of Synchronization of Carbohydrate and Protein Supply on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

  • Seo, Ja-Kyeom (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yang, Ji-Young (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Hyun-J. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Upadhaya, Santi Devi (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Cho, W.M. (Dairy Science Division, National Institute of Animal Science) ;
  • Ha, Jong-K. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2010.07.06
  • 심사 : 2010.08.03
  • 발행 : 2010.11.01

초록

Three rumen-cannulated Holstein steers were fed three diets, each with a different synchrony index (SI) (LS: 0.77, MS: 0.81, and HS: 0.83), in order to examine the effect of diet on rumen fermentation, nitrogen balance, and microbial protein synthesis. Synchrony index was calculated based on the carbohydrate and crude protein fractions of each ingredient and their degradation rates. Feeding the steers diets with different SIs did not influence dry matter, crude protein, NDF, or ADF digestibility. The concentrations of total and individual VFA in the rumens of steers that were fed the two higher-SI diets were higher than in those fed the low-SI diet (p<0.05), but there was no significant difference between the two higher-SI diets. One hour after feeding, steers on the LS diet had lower ruminal pHs than did those fed the MS or HS diets (p<0.05), and animals on the LS diet generally showed higher ruminal $NH_3$-N levels than did animals on the other diets, with the 4-h post-feeding difference being significant (p<0.05). Steers receiving the LS diet excreted more nitrogen (N) in their urine than did those on the two higher-SI diets (p<0.05), and the total N excretion of those on the LS diet was also higher (p<0.05). Microbial N levels calculated from the concentration of urinary purine derivatives were generally higher when the SI was higher, with the highest microbial protein synthesis being produced by steers on the HS diet (p<0.05). In conclusion, in the current study, ingestion of a synchronous diet by Holstein steers improved microbial protein synthesis and VFA production and decreased total N output.

키워드

참고문헌

  1. Aldrich, J. M., L. D. Muller, G. A. Varga and L. C. Griel. 1993.Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76:1091-1105. https://doi.org/10.3168/jds.S0022-0302(93)77438-X
  2. AOAC. 1990. Official methods of analysis. 15th Edn. Association of Official Analytical Chemists, Arlington, Virginia.
  3. Biricik, Hakan, I. I. Turkmen, G. Deniz, B. H. Gulmez, H.Gencoglu and Birgul Bozan. 2006. Effects of synchronizing starch and protein degradation in rumen on fermentation, nutrient utilization and total tract digestibility in sheep. Ital. J. Anim. Sci. 5:341-348.
  4. Casper, David P., Harouna A. Maiga, Michel J. Brouk, and David J.Schingoethe. 1999. Synchronization of carbohydrate and protein sources on fermentation and passage rates in dairy cows. J. Dairy Sci. 82:1779-1790. https://doi.org/10.3168/jds.S0022-0302(99)75408-1
  5. Chamberlain, D. G. and J. J. Choung. 1995. The importance of rate of ruminal fermentation of energy sources in diets for dairy cows, In: Recent advances in animal nutrition (Ed. P. C. Garnsworthy and D. J. A. Cole). Nottingham, Univ. Press. UK. pp. 67-89.
  6. Chaney, A. L. and E. P. Marbach. 1962. Modified reagent for determination of urea and ammonia. Clin. Chem. 8:130-132.
  7. Chanjula, P., M. Wanapat, C. Wachirapakorn and P. Rowlinson.2004. Effects of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairu cows. Asian-Asut. J. Anim. Sci. 17:1400-1410. https://doi.org/10.5713/ajas.2004.1400
  8. Chen, X. B., D. B. F. D. Hovell, E. R. Orskov and D. S. Brown.1990. Excretion of purine derivatives by ruminants: Effect of exogenous nucleic acid supply on purine derivative excretion by sheep. Br. J. Nutr. 63:131-142. https://doi.org/10.1079/BJN19900098
  9. Chen, X. B., Y. K. Chen, M. F. Franklin, E. R. Orskov and W. J.Shand. 1992. The effect of feed intake and body weight on purine derivative excretion and microbial protein supply in sheep. J. Anim. Sci. 70:1534-1542.
  10. Chumpawadee, S., K. Sommart, T. Vongpralub and V. Pattarajinda.2006. Effects of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Aust. J. Anim. Sci. 19:181-188.
  11. Clark, J. H., T. K. Klusmeyer and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  12. Dewhurst, R. J., D. R. Davies and R. J. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85:1-21. https://doi.org/10.1016/S0377-8401(00)00139-5
  13. Elseed, F. A. M. A. 2005. Effect of supplemental protein feeding frequency on ruminal characteristics and microbial N production in sheep fed treated rice straw. Small Rumin. Res. 57:11-17. https://doi.org/10.1016/j.smallrumres.2004.04.013
  14. Erwin, W. S., J. Marco and E. M. Emery. 1961. Volatile fetty acid analysis of blood and rumen fluids by gas chromatography. J. Dairy Sci. 44:1786-1771.
  15. George, S. K., M. T. Dipu, U. R. Mehra, P. Singh, A. K. Verma andJ. S. Ramgaokar. 2006. Improved HPLC method for the simultaneous determination of allantoin, uric acid and creatinine in cattle urine. J. Chromatogr. B 832:134-137. https://doi.org/10.1016/j.jchromb.2005.10.051
  16. Gill, M. 1991. Modelling nutrient supply and utilization by ruminants. In: Recent Advances in Animal Nutrition (Ed. W. Haresign and D. J. A. Cole). Butterworth Heinman, Oxford, UK. pp. 211-236.
  17. Hall, M. B. and G. B. Huntington. 2008. Nutrient synchrony: Sound in theory, elusive in practice. J. Anim. Sci. 86:E287-E292.
  18. Herrera-Saldana, R., R. Gomez-Alarcon, M. Torabi and J. T. Huber.1990. Influence of synchronizing protein and starch degradation in the rumen on nutrient utilization and microbial protein synthesis. J. Dairy Sci. 73:142-148. https://doi.org/10.3168/jds.S0022-0302(90)78657-2
  19. Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3630-3644. https://doi.org/10.3168/jds.S0022-0302(91)78553-6
  20. Joo, J. W., G. S. Bae, W. K. Min, H. S. Choi, W. J. Maeng, Y. H.Chung and M. B. Chang. 2005. Effect of protein sources on rumen microbial protein synthesis using rumen simulated continuous culture system. Asian-Asut. J. Anim. Sci. 18:326-331. https://doi.org/10.5713/ajas.2005.326
  21. Kaswari, T., L. Peter, G. Flachowsky and U. T. Meulen. 2006. Studies on the relationship between the synthesis in the rumen of dairy cows. Anim. Feed Sci. Technol. 139:1-22.
  22. Khalili, H. and P. Huhtanen. 1991. Sucrose supplements in cattle given a grass silage based diet. 2. Digestion of cell wall carbohydrates. Anim. Feed Sci. Technol. 33:263-273. https://doi.org/10.1016/0377-8401(91)90065-Z
  23. Khezri, A., K. Rezayazdi, M. Danesh. Mesgaran and M. Moradi-Sharbabk. 2009. Effect of different rumen-degradable carbohydrates on rumen fermentation, nitrogen metabolism and lactation performance of Holstein dairy cows. Asian-Aust. J. Anim. Sci. 22:651-658. https://doi.org/10.5713/ajas.2009.80426
  24. Kim, K. H., J. J. Choung and D. G. Chamberlain. 1999. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming a diet of grass silage and cereal-based concentrate. J. Sci. Food Agric. 79:1441-1447. https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1441::AID-JSFA385>3.0.CO;2-Z
  25. Kim, K. H., S. S. Lee, B. T. Jeon and C. W. Kang. 2000. Effects of the pattern of energy supply on the efficiency of nitrogen utilization for microbial protein synthesis in the non-lactating cows consuming grass silage. Asian-Aust. J. Anim. Sci. 13:962-966. https://doi.org/10.5713/ajas.2000.962
  26. Kolver, E., L. D. Muller, G. A. Varga and T. J. Cassidy. 1998. Synchronization of ruminal degradation of supplemental carbohydrate with pasture nitrogen in lactating dairy cows. J. Dairy. Sci. 81:2017-2028. https://doi.org/10.3168/jds.S0022-0302(98)75776-5
  27. Mahr-un-Nisa, A. Javaid, M. Aasif Shahzad and M. Sarwar. 2008. Influence of varying ruminally degradable to undegradable protein ratio on nutrient intake, milk yield, nitrogen balance, conception rate and days open in early lactating Nili-Ravi Buffaloes (Bubalus bubalis). Asian-Aust. J. Anim. Sci. 21:1303-1311. https://doi.org/10.5713/ajas.2008.70565
  28. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship ruminall protein and carbohydrate availability to microbial protein synthesis and milk production. J. Dairy Sci. 71:2070-2107. https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  29. National Research Council. 2000. Nutrient requirement of beef cattle. 7th ed. Natl. Acad. Press, Washington, DC.
  30. Perez, J. F., J. Balcells, J. A. Guada and C. Castrillo. 1997. Rumen microbial production estimated either from urinary purine derivative excretion or from direct measurements of 15N and purine bases as microbial markers: effect of protein source and rumen bacterial isolates. Anim. Sci. 65:225-236. https://doi.org/10.1017/S1357729800016532
  31. Rotger, A., A. Ferret, S. Calsamiglia and X. Manteca. 2006.Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J. Anim. Sci. 84:1188-1196.
  32. SAS. 1996. SAS user's guide (Version 7). SAS Inst. Inc., Cary, NC.
  33. Shabi, Z., A. Arieli, I. Bruckental, Y. Aharoni, S. Zamwel, A. Borand H. Tagari. 1998. Effect of the synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasums of dairy cows. J. Dairy Sci. 81:1991-2000. https://doi.org/10.3168/jds.S0022-0302(98)75773-X
  34. Sinclair, L. A., P. C. Garnsworthy, P. Beardsworth, P. Freeman and P. J. Buttery. 1991. The use of cytosine as a marker to estimate microbial protein synthesis in the rumen. Anim. Prod. 52:592 (Abstr).
  35. Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery.1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in the sheep. J. Agric. Sci. 120:251-263. https://doi.org/10.1017/S002185960007430X
  36. Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery.1995. Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 124:463-472. https://doi.org/10.1017/S0021859600073421
  37. Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.
  38. Strobel, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69:2941-2946. https://doi.org/10.3168/jds.S0022-0302(86)80750-0
  39. Valkeners, D., A.Thewis, F. Piron and Y. Beekers. 2004. Effect of imbalance between energy and nitrogen supplies on microbial protein synthesis and nitrogen metabolism in growing double muscled belgian blue bulls. J. Anim. Sci. 82:1818-1825.
  40. Valkeners, D., A. Thewis, S. Amant and Y. Beckers. 2006. Effect of various levels of imbalance between energy and nitrogen release in the rumen on microbial protein synthesis and nitrogen metabolism in growing double-muscled Belgian Blue Bulls fed a corn-silage based diet. J. Anim. Sci. 84:877-885.
  41. Valkeners, D., A. Thewis, M. Van laere and Y. Beckers. 2008. Effects of rumen-degradable protein balance deficit on voluntary intake, microbial protein synthesis, and nitrogen metabolism in growing double-muscled Belgian blue bulls fed corn silage-based diet. J. Anim. Sci. 86:680-690.
  42. Van Soest, P. J. and C. J. Sniffen. 1984. Nitrogen fractions in NDF and ADF. Proc. Dist. Feed Conf. 39:73.
  43. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  44. Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery.1999a. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep: food characterization and growth and metabolism of ewe lambs given food ad libitum. Anim. Sci. 69:223-235.
  45. Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery.1999b. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the metabolism and growth of ram lambs given food at a restricted level. Anim. Sci. 69:627-636.
  46. Yang, J. Y., J. Seo, H. J. Kim, S. Seo and Jong K. Ha. 2010.Nutrient synchrony: Is it a suitable strategy to improve nitrogen utilization and animal performance? Asian-Aust. J. Anim. Sci. 23:972-979. https://doi.org/10.5713/ajas.2010.r.04

피인용 문헌

  1. Effect of carbohydrate source and cottonseed meal level in the concentrate: IV. Feed intake, rumen fermentation and milk production in milking cows vol.45, pp.2, 2013, https://doi.org/10.1007/s11250-012-0238-6
  2. Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation vol.28, pp.1, 2014, https://doi.org/10.5713/ajas.14.0555
  3. Growth performance of Brangus steers fed graded levels of sun-dried broiler litter as a substitute for cottonseed cake vol.47, pp.6, 2015, https://doi.org/10.1007/s11250-015-0827-2
  4. Nutritional value of sorghum silage of different purposes vol.41, pp.3, 2017, https://doi.org/10.1590/1413-70542017413038516
  5. Effects of different carbohydrate sources on activity of rumen microbial enzymes and nitrogen retention in sheep fed diet containing recycled poultry bedding vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2016.1258363
  6. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids1 vol.93, pp.11, 2015, https://doi.org/10.2527/jas.2015-9336
  7. Feeding of Total Mixed Ration on the Productivity of Friesian Holstein Cross-Grade Cattle vol.119, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/119/1/012024
  8. The effect of different levels of molasses on the digestibility, rumen parameters and blood metabolites in sheep fed processed broiler litter vol.179, pp.1, 2013, https://doi.org/10.1016/j.anifeedsci.2012.12.001
  9. Influence of ruminal degradable intake protein restriction on characteristics of digestion and growth performance of feedlot cattle during the late finishing phase vol.56, pp.4, 2010, https://doi.org/10.1186/2055-0391-56-14
  10. Effects of varying proportions of crushed rice with hull in total mixed ration silage on feed intake, nutrient digestibility, feed particle passage rates, and nitrogen balance in Japanese Black cattle vol.89, pp.4, 2018, https://doi.org/10.2508/chikusan.89.423
  11. Influences of urea fermentation potential on growth performance, dietary energetics, digestive function, and blood urea N in Holstein steers fed a finishing diet based on steam-flaked corn where metab vol.35, pp.4, 2010, https://doi.org/10.15232/aas.2019-01850
  12. Effect of Two Nutritional Strategies to Balance Energy and Protein Supply in Fattening Heifers on Performance, Ruminal Metabolism, and Carcass Characteristics vol.10, pp.5, 2010, https://doi.org/10.3390/ani10050852
  13. Effect of protein level and grain source on milk production, nutrient digestibility and ruminal fermentation in primiparous Holstein cows vol.158, pp.8, 2010, https://doi.org/10.1017/s0021859621000095
  14. Effect of tannins and monensin on feeding behaviour, feed intake, digestive parameters and microbial efficiency of nellore cows vol.19, pp.1, 2010, https://doi.org/10.1080/1828051x.2020.1729667
  15. Effect of synchronizing the rate degradation of protein and organic matter of feed base on corn waste on fermentation characteristic and synthesis protein microbial vol.788, pp.1, 2010, https://doi.org/10.1088/1755-1315/788/1/012042
  16. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique vol.105, pp.1, 2010, https://doi.org/10.3168/jds.2021-20165