DOI QR코드

DOI QR Code

ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS

  • Kim, Jin-Hong (DEPARTMENT OF MATHEMATICAL SCIENCES KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY)
  • Received : 2007.05.14
  • Published : 2010.07.01

Abstract

For a closed symplectic 4-manifold X, let $Diff_0$(X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of $Diff_0$(X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {$n_1$, $n_2$, $\ldots$, $n_k$} and any non-negative integer m, there exists a closed symplectic (or K$\ddot{a}$hler) 4-manifold X with $b_2^+$ (X) > m such that the homologies $H_i$ of the quotient space $Diff_0$(X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = $2n_1$ - 1, $\ldots$, $2n_k$ - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati$\acute{c}$.

Keywords

References

  1. B. Aebischer et al., Symplectic Geometry, An introduction based on the seminar in Bern, 1992. Progress in Mathematics, 124. Birkhauser Verlag, Basel, 1994.
  2. S. Akbulut and B. Ozbagci, On the topology of compact Stein surfaces, Int. Math. Res. Not. 2002 (2002), no. 15, 769-782. https://doi.org/10.1155/S1073792802108105
  3. S. Bradlow, Vortices in holomorphic line bundles over closed Kahler manifolds, Comm. Math. Phys. 135 (1990), no. 1, 1-17. https://doi.org/10.1007/BF02097654
  4. D. Eisenbud and W. Neumann, Three-dimensional Link Theory and Invariants of Plane Curve Singularities, Annals of Mathematics Studies, 110. Princeton University Press, Princeton, NJ, 1985.
  5. Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990), no. 1, 29-46. https://doi.org/10.1142/S0129167X90000034
  6. Y. Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, Topological methods in modern mathematics (Stony Brook, NY, 1991), 171-193, Publish or Perish, Houston, TX, 1993.
  7. R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. https://doi.org/10.2307/121005
  8. R. Gompf and A. Stipsicz, 4-manifolds and Kirby Calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, 1999.
  9. P. Kronheimer, Some non-trivial families of symplectic structures, preprint (1995); available at http://math.harvard.edu/~kronheim.
  10. P. Kronheimer and T. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997), no. 2, 209-255. https://doi.org/10.1007/s002220050183
  11. P. Lisca and G. Matic, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997), no. 3, 509-525. https://doi.org/10.1007/s002220050171
  12. C. McMullen and C. Taubes, 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999), no. 5-6, 681-696. https://doi.org/10.4310/MRL.1999.v6.n6.a8
  13. J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. https://doi.org/10.1090/S0002-9947-1965-0182927-5
  14. T. Mrowka, P. Ozsvath, and B. Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685-791. https://doi.org/10.4310/CAG.1997.v5.n4.a3
  15. D. Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998), no. 6, 743-758. https://doi.org/10.4310/MRL.1998.v5.n6.a5
  16. D. Ruberman, A polynomial invariant of diffeomorphisms of 4-manifolds, Proceedings of the Kirbyfest (Berkeley, CA, 1998), 473-488 (electronic), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999.
  17. D. Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants, Geom. Topol. 5 (2001), 895-924. https://doi.org/10.2140/gt.2001.5.895
  18. N. Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465-490. https://doi.org/10.2140/pjm.2002.205.465
  19. P. Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999), no. 1, 145-171. https://doi.org/10.4310/jdg/1214425219
  20. I. Smith, On moduli spaces of symplectic forms, Math. Res. Lett. 7 (2000), no. 5-6, 779-788. https://doi.org/10.4310/MRL.2000.v7.n6.a10
  21. A. Stipsicz, On Stein fillings of the 3-torus $T^3$, preprint (2001).
  22. C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822. https://doi.org/10.4310/MRL.1994.v1.n6.a15
  23. C. Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no. 1, 9-13. https://doi.org/10.4310/MRL.1995.v2.n1.a2
  24. C. Taubes, SW ${\Rightarrow}$ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845-918. https://doi.org/10.1090/S0894-0347-96-00211-1
  25. S. Vidussi, Homotopy K3's with several symplectic structures, Geom. Topol. 5 (2001), 267-285. https://doi.org/10.2140/gt.2001.5.267