DOI QR코드

DOI QR Code

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea

동해 울릉분지 퇴적물에서 유기탄소 순환

  • 이태희 (한국해양연구원 남해연구소) ;
  • 김동선 (한국해양연구원 기후.연안재해연구부) ;
  • 김부근 (부산대학교 자연과학대학 해양시스템과학과) ;
  • 최동림 (한국해양연구원 남해연구소)
  • Received : 2010.05.03
  • Accepted : 2010.06.10
  • Published : 2010.06.30

Abstract

This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Keywords

References

  1. 강동진 (1999) 동해의 탄소 순환에 관한 연구. 박사학위 논문, 서울대학교, 159 p
  2. 김동선, 최만식, 오혜영, 김경희, 노재훈 (2009) 동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 유기탄소 침강플럭스 추정. 한국해양학회지 바다 14(1):1-9
  3. 김재연, 강동진, 김응, 조진형, 이창래, 김경렬, 이동섭 (2003) 상자모형으로 추정한 동해의 생물 펌프. 한국해양학회지 바다 8:295-306
  4. 최유정, 김동선, 이태희, 이창복 (2009) 동해 울릉분지 퇴적물에서 망간산화물과 철산화물 환원율 추정. 한국해양학회지 바다 14(3):127-133
  5. Anderson RF, Rowe GT, Kemp P, Trumbore S, Biscaye PE (1994) Carbon budget for the mid-slope depocenter of the Middle Atlantic Bight. Deep-Sea Res I 41:669-703 https://doi.org/10.1016/0967-0645(94)90040-X
  6. Archer D, Devol A (1992) Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurement. Limnol Oceanogr 37:614-629 https://doi.org/10.4319/lo.1992.37.3.0614
  7. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res II 49:219-236 https://doi.org/10.1016/S0967-0645(01)00101-1
  8. Berger WH, Smetacek VS, Wefer G (1989) Ocean productivity and paleoproductivity - an overview produtivity of the oceans present and past : report of the dahlem workshop on productivity of the ocean. BERLIN, 1988, Life sciences research report, vol 44, Wiley & Sons, Chicherster, pp 1-34
  9. Berner RA (1980) Early diagenesis. Princeton University Press, Princeton, 241 p
  10. Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine baterial assemblages. Nature 379:508-512
  11. Boning P, Cuypers S, Grunwald M, Schnetger B, Brumsack HJ (2005) Geochemical characteristics of Chilean upwelling sediments at -36${\circ}$S. Mar Geol 220:1-21 https://doi.org/10.1016/j.margeo.2005.07.005
  12. Calvert SE, Price NB (1983) Geochemistry of Namibian Shelf sediments. In: Thiede J, Suess E (eds) Coastal upwelling: Its sediment record. Plenum Press, New York, 337-375 p
  13. Chase Z, Anderson RF, Fleisher MQ, Kubik W (2002) The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth Planet Sc Lett 204:215-229 https://doi.org/10.1016/S0012-821X(02)00984-6
  14. Chen CTA, Wang SL, Bychkov AS (1995) Carbonate chemistry of the Sea of Japan. J Geophys Res 100:13737-13745 https://doi.org/10.1029/95JC00939
  15. Chough SK, Lee HJ, Yoon SH (2000) Marine Geology of Korean Seas. Elsevier, Amsterdam, 313 p
  16. Coppola L, Roy-Barman M, Mulsow S, Povince P, Jeandel C (2005) Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by $^{234}Th$. Deep-Sea Res I 52:51-68 https://doi.org/10.1016/j.dsr.2004.07.020
  17. Devol AH, Christensen JP (1993) Benthic fluxes and nitrogen cycling in sediments of continental margin of eastern North Pacific. J Mar Res 51:345-372 https://doi.org/10.1357/0022240933223765
  18. Fisher G, Ratmeyer V, Wefer G (2000) Organic carbon fluxes in the Atlantic and the Southern Ocean: Relationship to primary production compiled from satellite radiometer data. Deep-Sea Res II 47:1961-1997 https://doi.org/10.1016/S0967-0645(00)00013-8
  19. François R, Honjo S, Krishfield R, Manganini S (2002) Fators controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochem Cy 16(4):1087-1098 https://doi.org/10.1029/2001GB001722
  20. Froelich FN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Ac 43:1075-1090 https://doi.org/10.1016/0016-7037(79)90095-4
  21. Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-eastern Atlantic. J Mar Biol Assoc UK 76(2):297-310 https://doi.org/10.1017/S0025315400030563
  22. Hay BJ (1988) Sediment accumulation in the central western Black Sea over the past 5100 years. Paleoceanogr 3:491-508 https://doi.org/10.1029/PA003i004p00491
  23. Hong GH, Kim SH, Chung CS, Kang DJ, Shin DH, Lee HJ, Han SJ (1997) $^210$Pb-derived sediment accumulation rates in the southwestern East Sea (Sea of Japan). Geo-Mar Let 17:126-132 https://doi.org/10.1007/s003670050017
  24. Hong GH, Kim YI, Baskaran M, Kim SK, Chung CS (2008) Distribution of $^210$Po and export of organic carbon from the euphotic zone in the Southwestern East Sea (Sea of Japan). J Oceanogr 64:277-292 https://doi.org/10.1007/s10872-008-0022-4
  25. Hogan PJ, Hurlburt HE (2000) Impact of upper oceantopography coupling and isopycnal outcropping in Jap/East Sea models with 1/8${\circ}$ to 1/64${\circ}$ resolution. J Phys Oceanogr 30:2535-2561 https://doi.org/10.1175/1520-0485(2000)030<2535:IOUOTC>2.0.CO;2
  26. Hyun JH, Kim D, Shin CW, Noh JH, Yang EJ, Mok JS, Kim SH, Kim HC, Yoo S (2009) Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat Microb Ecol 54:45-54
  27. Jahnke RA, Reimers CE, Craven DB (1990) Intensification of recycling of organic matter at the sea floor near ocean margin. Nature 348:50-54 https://doi.org/10.1038/348050a0
  28. Kim KR, Kim G, Kim K, Lobanov V, Ponomarev V, Salyuk A (2002) A sudden-bottom water formation during the severe winter 2000-2001: the case of the East/Japan Sea. Geophys Res Lett 29(8):1234. doi:10.1029/2001GL014498
  29. Klaas C, Acher DE (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biochem Cy 16(4):1116. doi:10.1029/2001GB001765
  30. KORDI (2003) Marine ecosystem responses to climate variability in the East Sea. KORDI, BSPE 825-00-1495-3, 498 p
  31. KORDI (2007) Carbon cycle in the East Sea I. The Ulleung Basin. KORDI, BSPE 97603-1921-1, 324 p
  32. Lee T, Hyun JH, Mok JS, Kim D (2008) Organic carbon accumulation and sulfate reduction reates in slope and basin sediments of Ulleung Basin, East/Japan Sea. Geo-Mar Lett 28:153-159 https://doi.org/10.1007/s00367-007-0097-8
  33. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York, 324 p
  34. Lutz M, Dunbar R, Caldeira K (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem Cy 16:1037-1055. doi:10.1029/2000GB001383
  35. Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediment. Geochim Cosmochim Ac 58:1271-1284 https://doi.org/10.1016/0016-7037(94)90381-6
  36. Milliman JD, Troy PJ, Balch WM, Adams AK, Li YH, Mackrnzie FT (1999) Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Res I 46:1653-1669 https://doi.org/10.1016/S0967-0637(99)00034-5
  37. Mitchell DA, Watts DR, Wimbush M, Teague WJ, Tracey KL, Book JW, Chang KI, Suk MS, Yoon JH (2005) Upper circulation patterns in the Ulleung Basin. Deep-Sea Res II 52:1617-1638 https://doi.org/10.1016/j.dsr2.2003.09.005
  38. Nelson MD, Anderson RF, Baeber RT, Brzezinski MA, Buesseler KO, Chase Z, Collier RW, Dickson M, Francois R, Hiscock MR, Honjo S, Marra J, Martin WR, Sambrotto RN, Sayles FL, Sigmon DE (2002) Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996-1998. Deepsea Res II 49:1645-1674 https://doi.org/10.1016/S0967-0645(02)00005-X
  39. Park SC, Yoo DG, Lee GH, Lee HH (1999) Accumulation of recent muds associted with coastal circulations, southeastern Korea Sea (Korea Strait). Cont Shelf Rea 19:589-608 https://doi.org/10.1016/S0278-4343(98)00106-X
  40. Reimers CE, Jahnke RA, McCorkle DC (1992) Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochem Cy 6:199-224 https://doi.org/10.1029/92GB00105
  41. Rember R, Trefry J (2005) Sediment and organic carbon focusing in the Shelikof Strait, Alaska. Mar Geol 224:83-101 https://doi.org/10.1016/j.margeo.2005.06.036
  42. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Miller FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic $CO_2$. Science 35:367-371
  43. Senjyu T, Shin HR, Yoon JH, Nagano Z, An HS, Byun SK, Lee CK (2005) Deep flow field in the Jap/East Sea as deduced from direct current measurements. Deep-Sea Res II 52:1726-1741 https://doi.org/10.1016/j.dsr2.2003.10.013
  44. Seung YH, Yoon JH (1995) Some features of winter convection in the Japan Sea. J Oceanogr 51:61-73 https://doi.org/10.1007/BF02235936
  45. Stahl H, Tengberg A, Brunnegard J, Hall POJ (2004) Recycling and burial of organic carbon in sediments of the Porcupine Abyssal Plain, NE Atlantic. Deep-Sea Res I 51:777-791 https://doi.org/10.1016/j.dsr.2004.02.007
  46. Teague WJ, Tracey KL, Watts DR, Book JW, Chang KI, Hogan PJ, Mitchell DA, Suk MS, Wimbush M, Yoon JH (2005) Observed deep circulation in the Ulleung Basin. Deep-Sea Res II 52:1802-1826 https://doi.org/10.1016/j.dsr2.2003.10.014
  47. Trull T, Bray S, Manganini S, Honjo S, Francois R (2001) Moored sediment trap measurement of carbon export in the Sub-antarctic and Polar Frontal Zones of the Southern Ocean, south of Australia. J Geophys Res 106:31489-31509. doi:10.1029/2000JC000308
  48. Tsunogai S, Watanabe Y, Harada K, Watanabe S, Saito S, Nakajima M (1993) Dynamics of the Japan Sea deep water studied with chemical and radiochemical tracers. In: Teramoto T (Ed) Deep Ocean Circulation, Physical and Chemical Aspects. Elsevier Oceanography Series Vol 59, pp 105-119
  49. Van Weering TCE, Stigter HCD, Balzer W, Epping EHG, Graf G, Hall IR, Helder W, Khripounoff A, Lohse L, McCave IN, Thomsen L, Vangriesheim A (2001) Benthic dynamics and carbon fluxes on the NW European continental margin. Deep-Sea Res II 48:3191-3222 https://doi.org/10.1016/S0967-0645(01)00037-6
  50. Wollast R, Chou L (2001) The carbon cycle at the ocean margin in the northern Gulf of Biscay. Deep-Sea Res II 48:3265-3293 https://doi.org/10.1016/S0967-0645(01)00040-6
  51. Yeager KM, Santschi PH, Rowe GT (2004) Sediment accumulation and radionuclide inventories ($^{239,240}Pu,\;^{210}Pb\;and\;^{234}Th$) in the northern Gulf of Mexico, as influenced by organic matter and macrofaunal density. Mar Chem 91:1-14 https://doi.org/10.1016/j.marchem.2004.03.016
  52. Yoo S, Kim H (2004) Suppression and enhancement of the spring bloom in the southwestern East Sea/Japan Sea. Deep-Sea Res II 51:1093-1111 https://doi.org/10.1016/j.dsr2.2003.10.008
  53. Zou H, Yu X (1985) Determination of $^{210}Pb$ in marine sediments and its application to geochronology. Acta Oceanol Sin 4(3):420-410
  54. Zuniga D, Calafat A, Sanchez-Vidal A, Canals M, Price B, Heussner S, Miserrocchi S (2007) Particulate organic carbon bufget in the open Algero-Balearic Basin (Western Mediterranean): Assessment from a one-year sediment trap experiment. Deep-Sea Res I 54:1530-1548 https://doi.org/10.1016/j.dsr.2007.06.001

Cited by

  1. Dissolved Oxygen at the Bottom Boundary Layer of the Ulleung Basin, East Sea vol.32, pp.4, 2010, https://doi.org/10.4217/OPR.2010.32.4.439
  2. Characterization of Clastic and Organic Sediments Near Dokdo, Korea vol.26, pp.2, 2013, https://doi.org/10.9727/jmsk.2013.26.2.65
  3. Sediment Oxygen Consumption Rate and Hydrogen Sulfide Release by Dissolved Oxygen Depletion in Hypoxic Area of the Gamak Bay, Korea vol.17, pp.3, 2015, https://doi.org/10.17663/JWR.2015.17.3.293
  4. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea vol.50, pp.3, 2015, https://doi.org/10.1007/s12601-015-0053-x
  5. Seawater N/P ratio of the East Sea vol.20, pp.4, 2015, https://doi.org/10.7850/jkso.2015.20.4.199