항산화물질을 생산하는 해양방선균 Streptomyces Sp. ACT-18의 동정 및 Electron Spin Resonance Spectrometry를 이용한 항산화활성

Identification and Antioxidant Activity using Electron Spin Resonance Spectrometry of Antioxidant Producing Marine Actinomycetes Streptomyces sp. ACT-18

  • 김만철 (제주대학교 수산생명의학과 해양과환경연구소) ;
  • 김주상 (제주대학교 수산생명의학과 해양과환경연구소) ;
  • ;
  • 한용재 (제주대학교 수산생명의학과 해양과환경연구소) ;
  • 허문수 (제주대학교 수산생명의학과 해양과환경연구소)
  • Kim, Man-Chul (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University) ;
  • Kim, Ju-Sang (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University) ;
  • Harikrishnan, Ramasamy (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University) ;
  • Han, Yong-Jae (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University) ;
  • Heo, Moon-Soo (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
  • 투고 : 2009.09.18
  • 심사 : 2010.02.12
  • 발행 : 2010.03.28

초록

본 연구는 제주 연안 해수로부터 분리된 항산화물질을 생산하는 해양 방선균의 천연해양항산화물질에 관한 연구이다. 균주 ACT-18은 16S rDNA 염기서열, 전자현미경을 이용한 형태학적 분석, 생리학적, 생화학적 특성 및 세포 지방산분석을 통하여 동정되었다. 분리균주 ACT-18은 Gram 양성, 호기성, 비운동성 포자, 배지상에서 substrate mycelia의 색이 어두운 초록색, aerial mycelia는 노란색의 회색을 나타내였다. 세포사이즈는 약 $0.5{\sim}1.0\;{\mu}m$였다. 16S rDNA 염기서열 분석결과 Gram 양성박테리아인 Streptomyces 종들과 그룹을 형성하였다. 지방산분석결과 주요 지방산은 $C_{15:0}$ anteiso(39.33%), $C_{16:1}$ cis 9(11.96%), $C_{16:0}$ (13.08%)과 $C_{17:0}$ anteiso(10.99%)로 분석되었다. Streptomyce sp. ACT-18의 배양액 메탄올 추출물의 항산화 활성은 electron spin resonance (ESR) spectrometer에 의한 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, alkyl 라디컬 소거활성을 측정하여 나타내었다. 그 결과 배양액 메탄올 추출물의 DPPH 라디컬 소거활성은 0.1 mg/mL의 농도에서 46%의 라디컬 소거활성을 보였으며, Hydroxyl 라디컬 소거활성은 0.1 mg/mL에서 63%, alkyl 라디컬 소거활성은 0.1 mg/mL에서 39%의 소거 활성을 보였다.

For the research of the natural marine antioxidant, an antioxidant-producing marine actinomycetes was isolated from sea water in Jeju coastal area. The strain was identified based on 16S rDNA sequencing, the morphology by a method of scanning electron microscopy, physiological and biochemical characteristics and cellular fatty acid analysis. The isolated strain ACT-18 was gram positive, aerobic, non-motile spores. Substrate mycelia are dark green and yellow gray aerial mycelia. The cell size of the strain was $0.5{\sim}1.0\;{\mu}m$. 16S rDNA sequence analysis showed that were Gram-positive bacteria grouped on Streptomyces sp. Results of cellular fatty acid analysis showed that major cellular fatty acids were $C_{15:0}$ anteiso (39.33%), $C_{16:1}$ cis 9 (11.96%), $C_{16:0}$ (13.08%) and $C_{17:0}$ anteiso (10.99%). The antioxidant activity of methanol extract from Streptomyce sp. ACT-18 was evaluated by measuring 1,1-diphenyl- 2-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical scavenging activity using an electron spin resonance (ESR) spectrometer. DPPH radical scavenging activity of SBME (Streptomyces Broth Methanol Extract) A-18 was 46% at 0.1 mg/mL. Hydroxyl radical scavenging activity of SBME A-18 was 63% at 0.1 mg/mL. Alkyl radical scavenging activity of SBME A-18 was 39% at 0.1 mg/mL.

키워드

참고문헌

  1. Alderson, G., D. A. Ritchie, C. Cappellano, R. H. Cool, N. M. Ivanova, A. S. Huddleston, C. S. Flaxman, V. Kristufek, and A. Lounes. 1993. Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144: 665-672. https://doi.org/10.1016/0923-2508(93)90072-A
  2. Beppu, T. and S. Horinouchi. 1991. Molecular mechanisms of the A-factor-dependent control of secondary metabolism in Streptomyces. Planta Medica. 57: 44-47.
  3. Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxyanisol and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
  4. Chang, H. B. and J. H. Kim. 2007. Antioxidant properties of dihydroherbimycin A from a newly isolated Streptomyces sp. Biotechnol Lett. 29: 599-603. https://doi.org/10.1007/s10529-006-9288-z
  5. Chang, H. B., S. C. Kim, and J. H. Kim. 2006. Chemical characteristics and biological activities of herbimycin A and dihydroherbimycin A produced by soil isolate Streptomyces sp. AO-0511. The Korean Journal of Microbiology. 42: 47-53.
  6. Choi, U. K., W. D. Ji, H. C. Chung, D. H. Choi, and Y. G. Chung. 1997. Optimization for pigment production and antioxidative activity of the products by Bacillus subtilis DC-2. J. Korean Soc. Food Nutr. 26: 1039-1043.
  7. Evans, P. and B. Halliwell. 2001. Micronutrients: oxidant/antioxidant status. British J. Nutr. 85: S67-S74. https://doi.org/10.1079/BJN2000296
  8. Frankel, E. N. 1996. Antioxidants in lipid foods and their on food quality. Food Chemistry. 57: 51-54. https://doi.org/10.1016/0308-8146(96)00067-2
  9. Hayaski, K., K. Suzuki, M. Kawaguchi, T. Nakagima, T. Suzuki, M. Numata, and T. Nakamura. 1995. Isolation of antioxidant from Penicillium roquefortii IFO 5956. Biosci. Biotechnol. Biochem. 59: 312-320.
  10. Hiramoto, K., H. Johkoh, K. I. Sako, and K. Kikugawa. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radical Res. 19: 323-332. https://doi.org/10.3109/10715769309056521
  11. Hopwood, D. A. 1987. Towards an understanding of gene switching in Streptomyces, the basis: of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B. 23: 2257-2269.
  12. Ito, N. S., A. Fukushima, A. Hasegawa, M. Shibata, and O. T. Ogis. 1983. Carcinogenicity of butylated hydroxy antisole in F344 rats. J. Nat. Cancer Inst. 70: 343-347.
  13. Iwai, Y. and Y. Takahashi. 1992. Selection of microbial sources of bioactive compounds. pp. 281-302. In S. Omura (ed.), The Search for Bioactive Compounds from Microorganisms. Springer-Verlag, New York.
  14. Janzen, E. G., D. L., Towner, and D. L. Haire. 1987. Detection of free radical generated from the in vitro metabolism of carbon tetrachloride using improved ESR spin trapping techniques. Free Radical Res. 3: 357-364. https://doi.org/10.3109/10715768709088076
  15. Jones, G. H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibiotics. J. Bacteriol. 163: 1215-1221.
  16. Kadiiska, M. B. and R. P. Masom. 2002. In vivo coppermediate free radical production: an ESR spin-trapping study. Spectrochim Acta A 58: 1227-1239. https://doi.org/10.1016/S1386-1425(01)00713-2
  17. Miller, L. and T. Berger. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application Note 228-241. Hewlett-Packard Co., Avondale, Pa.
  18. Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylydrazyl radical. Free Radical Bio. Med. 21: 895-902. https://doi.org/10.1016/0891-5849(96)00237-7
  19. Okami, Y, and K. Hotta. 1988. Search and discovery of new antibiotics. pp. 33-67. In M. Goodfellow (ed.), Actinomycetes in biotechnology. Academic Press. London.
  20. Okami, Y., T. Okazaki, T. Kitahara, and H. Umezawa. 1976. Studies on marine microorganisms. A. new antibiotic, aplasmomycin, produced by a Streptomyces isolated shallow sea mud. J. Antibiotics. 29: 1019-1025. https://doi.org/10.7164/antibiotics.29.1019
  21. Okazaki, T. 1987. Rare actinomycetes, new breed of actinomycetes. J. Microorgainsm. 3: 453-461.
  22. Omura, S., A. Nakagawa, and N. Sadakane. 1979. Structure of herbimycin, a new ansamycin antibiotic. Tetrahedron Lett. 44: 4323-4326.
  23. Roberfroid, M. and P. B. Colderon. 1995. In free radicals and oxidation phenomena in biological systems. University of Catholique de Louvain Brussels, New York, pp. 11-32.
  24. Rosen, G. M. and E. J. Rauckman. 1984. Spin trapping of superoxide and hydroxyl radicals. In L. Packer (Ed.) Methods in enzymology, vol105. Academic Press, Orlando, FL. pp. 198-209.
  25. Ryu, B. H., H. S. Kim, J. S. Jung, S. H. Lee, and Y. A. Ji. 1987. Screening for antioxidant compounds from edible marine algae. Korean J. Food Sci. Technol. 23: 256-261.
  26. Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
  27. Tsukamoto, M., S. Nakajima, H. Arakawa, Y. Sugiura, H. Suzuki, M. Hirayama, S. Kamiya, Y. Teshima, H. Kondo, K. Kojiri, and H. Suda. 1998. A new antitumor antibiotics, BE- 19412A, produced by a Streptomyces. J. Antibiotics. 51: 908-914. https://doi.org/10.7164/antibiotics.51.908